INTRODUCTION TO
GRAPH DRAWING

Fall 2010

Graph Drawing: Algorithms for the Visualization of Graphs. 1st.
Prentice Hall PTR.
PLANARITY TESTING
Planarity Testing

1. Count edges and check Euler's formula
2. Find pieces of G
3. For each piece P that is not a path
test planarity by recursion
4. Compute interlacement graph of the pieces
5. Test if the interlacement graph is bipartite
Planarity Testing

- Graph is planar if and only if all its connected components are planar.
- A connected graph is planar if and only if all its biconnected components are planar.
A graph is *connected* if there is a path between u and v for each pair (u,v) of vertices.

A *cutvertex* in a graph is a vertex whose removal disconnects the graph.

A connected graph with no cutvertices is *biconnected*.

A maximal biconnected subgraph of a graph is biconnected component.
- Decomposing the Graph into connected and biconnected components.
- Our problem will be restricted to testing the planarity of biconnected graphs.
- Use cycle to decompose a biconnected graph into pieces.
PIECE P OF A GRAPH G WITH RESPECT TO PATH C

- The subgraph induced by the edges of path C in a class is called a piece of G with respect to C.

\[G = (V, E) \]

\[G' = (V', E') \]
\[V' \subseteq V \]
\[E' = E \cap (V' \times V') \]
Let a biconnected graph G contain a cycle C

Partition the edges of G not on C into classes:

- Two edges of G are in the same class if there is a path between them that does not contain any vertex of C.
Sub graph induced by edges in a class is called a *piece of G* with respect to C.

- Pieces consisting of a single edge between two vertices of C
- Pieces consisting of a connected graph with at least one vertex not in C
ATTACHMENTS

- Vertices of piece P which are also on cycle C are called attachments of P.
- Each piece has at least two attachments. (why?)
Separating cycle

- Cycle C is *separating* if it has at least two pieces.
- And it is *nonseparating* if it has one piece.
LEMMMA 3.4

Let G be a \textit{biconnected} graph and C be a \textit{nonseparating} cycle of G with piece P. If P is not a path then G has a separating cycle C' consisting of subpath of C and a path of P.
Lemma 3.4 Proof

- Let \(u \) and \(v \) be 2 attachments of \(P \) that are consecutive in the circular ordering.
- Let \(\gamma \) be a subpath of \(C \) between \(u \) and \(v \) without any attachments.
- Since \(P \) is connected there is a path \(\pi \) in \(P \) between \(u \) and \(v \).
- Let \(C' \) be the cycle obtained from \(C \) by replacing \(\gamma \) with \(\pi \).
- Now \(\gamma \) is a piece on \(G \) with respect to \(C' \).
- Let \(e \) be an edge on \(P \) not \(\pi \).
- \(e \) exist Because \(P \) is not a path.
- So there is a piece of \(C' \) other than \(\gamma \) which contains \(e \).
- Thus \(C' \) is a separating cycle in \(G \).
INTERLACEMENT

- Each piece can be drawn either entirely inside or outside of the cycle.
- Interlacing pieces are ones that can’t be drawn on the same side of C without crossing.
INTERLACEMENT GRAPH

- Vertices are pieces on G with respect to cycle C
- Edges are pairs of pieces that interlace (can’t reside on the same side of C without crossing).
INTERLACEMENT TO PLANARITY

- If G is planar graph then its interlacement graph must be *bipartite*
Theorem 3.8

- A biconnected graph G with cycle C is planar if and only if:
 - For each piece P of G with respect to C, the graph obtained by adding P to C is planar.
 - The interlacement graph of the pieces of G with respect to C, is bipartite.
Planarity testing

1. Count edges and check Euler's formula
2. Find pieces of G
3. For each piece P that is not a path
test planarity by recursion
4. Compute interlacement graph of the pieces
5. Test if the interlacement graph is bipartite
ALGORITHM PLANARITY TESTING

- Input a biconnected graph G with n vertices and at most $3n-6$ edges, and a separating cycle C.

- Output an indication of whether G is planar

1. Compute the pieces of G with respect to C. ($O(n)$)
ALGORITHM PLANARITY TESTING

2. For each piece P of G that is not a path:
 - Let P' be the graph obtained by adding P to C
 - Let C' be the cycle of P' obtained from C by replacing the portion of C between two consecutive attachments with a path P between them
 - Apply the algorithm recursively to graph P' and cycle C'. If P' is nonplanar, return “nonplanar”. ($O(n^2)$)
Algorithm planarity testing

3. Compute the interlacement graph I of the pieces. ($O(n^2)$)
ALGORITHM PLANARITY TESTING

4. Test whether I is bipartite. If I is not bipartite return “nonplanar”. O(n²))

5. Return “planar”.
OVERALL RUNTIME

- Each recursive invocation takes $O(n^2)$
- Each recursion is associated with at least one edge of G
- There are $O(n)$ edges
- Runtime is $O(n^3)$