Introduction

• Supporting visual thinking
 – developing representations
 – comprehension
• some vision perception basics
• attention
• depth
References

 http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/ASApaper.html

Foveal vision

• size of a thumbnail at arms length
• Corresponds to a small high resolution area on the retina

http://www.cs.nyu.edu/~yap/visual/home/proj/foveation.html
Foveal vision

- size of a thumbnail at arms length
- Corresponds to a small high resolution area on the retina

http://svi.cps.utexas.edu/mpeg.shtml

Foveal vision

http://psy.ucsd.edu/~sanstis/SABlur.html
Foveal vision

http://psy.ucsd.edu/~sanstis/SABlur.html

Field of View

- Useful field of view varies with task
 - low character density - as wide as 15°
 - high character density - as narrow as 1° to 4°
Foveal vision

Saccades

- Fovea gives small high resolution images
- Saccades do rapid scanning
- Brain assembles
- Vision perceived as continuous

http://vision.arc.nasa.gov/personnel/jbm/home/projects/osa98/osa98.html
Eye movements

- Saccadic movements
 - eye moves rapidly from fixation to fixation
 - dwell period 200 to 600 msec
 - saccade takes 20 to 100 msec
 - peak velocity can be 900 deg/sec
 - ballistic - cannot be adjusted mid saccade
 - saccadic suppression - less sensitive visually during a saccade

- smooth-pursuit movements
 - ability to 'lock-on' to a smoothly moving object
 - enables head and/or body movements while maintaining visual contact

- convergent movements
 - towards - eyes converge
 - away - eyes diverge

- accommodation
 - new target - refocus - 200 msec
 - convergence and accommodation neurologically coupled

Psychophysical Measurement

- Just noticeable difference (JND)

- Increment where human notices change

- Average to create subjective scale
Non-linear perception of magnitudes

Sensory modalities
NOT equally discriminable

Steven’s Power Law

\[I = S^p \]

Field of View

Affected by motion

- appearance
- motion

[Stevens, On the theory of scales of measurement, Science 103:2684, 1946]
Change Blindness

- some times changes are not perceived
 http://www.psych.ubc.ca/~rensink/

Rensink, Ronald A.; O'Regan, J. Kevin & Clark, James J. (1997), *To see or not to see: the need for attention to perceive changes in scenes*, Psychological Science 8 (5): 368-373.

Light and Objects

- objects reflect light
- luminance
 - black paper in sunlight vs. white paper in indoor lighting conditions
- eyes and photometers - we see differences not absolutes (this is similar to many sensory systems)
Human Perception and Light

- Difference Signaling
 - Contrast vs. value information
 - Light value information vs. object information.
- cell has normal rate
 - light in centre excites
 - light in surrounds inhibits

Consequences

- Hermann Grid Illusion
Consequences

• Scintillating Grid

Consequences

• Grating Induction Effect
Consequences

• Mach Banding

Consequences

• Chevreul Illusion
Consequences

- Crispening

Consequences

- Craik-Cornsweet Effect
Seurat: The Bathers

• Craik-Cornsweet Effect

Lightness/Brightness summary

• Encoding of Information in greyscale
 • Perception may not be as expected
• C. Ware’s advice - often better ways to encode information than to use a greyscale
• The human eye is not a photometer, and should not be treated as such
• Understanding how the eye works can help us avoid problems that might arise
Overview for Attention

- eye movements
- searching
- neural processing
- information density
- information coding
- applications
Reading and short term memory

- How many symbols can you remember?

- Usually about 7
- 7+ or - 2
- short term memory

Pre-attentive processing

2358945739756860796752453512346534624356245762457245
613452352352352352352351345324716498762987460329587
2358276533637872138764298769876364098721696532962413
923746216398763987123659712459387463874988712649817
2649872165971523972356987129721653978216409871246478
34672189763945089764398217346946496439276430987263
4287469864987597152397123976490871469876498724369812
7346987461435895321456865437

2358945739756860796752453512346534624356245762457245
613452352352352352352351345324716498762987460329587
2358276533637872138764298769876364098721696532962413
923746216398763987123659712459387463874988712649817
2649872165971523972356987129721653978216409871246478
34672189763945089764398217346946496439276430987263
4287469864987597152397123976490871469876498724369812
7346987461435895321456865437
Pre-attentive processing

• Features thought to be pre-attentive
 • form
 - line orientation
 - line length
 - line width
 - line collinearity
 - size
 - curvature
 - spatial grouping
 - added marks
 - numerosity
 • colour
 - hue
 - intensity
 • spatial position
 - 2d position
 - stereoscopic depth
 - convex/concave from shading
 • motion
 - flicker
 - direction of motion
Pre-attentive processing

- **Orientation**: curved/straight
- **Shape**: convex/concave
- **Enclosure**: addition
- **Parallelism**: Juncture
- **Value**: convex/concave
- **Number**: Parallelism

Examples:
- Orientation: curved/straight
- Shape: convex/concave
- Enclosure: addition
- Parallelism: Juncture
- Value: convex/concave
- Number: Parallelism
Pre-attentive processing

- depth
- Length/width
- closure
- lighting direction
- terminators
- density
- intensity
- intersection

http://www.csc.ncsu.edu/faculty/healey/PP/

Pre-attentive processing

- 3D orientation
- Artistic effects
Pre-attentive processing

- Colour
- Shape
- Velocity
- Direction
- Flicker
Pre-attentive processing

- Conjunction search
- Colour and shape

Pre-attentive processing

- generalizations
- which dominates seems to vary with degree of ‘separation’
- adding is ‘better’ than taking away
- to be pre-attentive a colour needs to be ‘outside’ the boundary of the region defined by the other colours in the display
Linewidth

Telecommunications traffic flow map

- Mappa.mundi.net/maps/maps_014/telegeography.html

Position: best for all data types

<table>
<thead>
<tr>
<th>data type</th>
<th>Quantitative</th>
<th>Ordinal</th>
<th>Nominal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Position</td>
<td>Position</td>
<td>Position</td>
</tr>
<tr>
<td></td>
<td>Length</td>
<td>Density</td>
<td>Hue</td>
</tr>
<tr>
<td></td>
<td>Angle</td>
<td>Saturation</td>
<td>Texture</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Hue</td>
<td>Connection</td>
</tr>
<tr>
<td></td>
<td>Area</td>
<td>Texture</td>
<td>Containment</td>
</tr>
<tr>
<td></td>
<td>Volume</td>
<td>Connection</td>
<td>Density</td>
</tr>
<tr>
<td></td>
<td>Density</td>
<td>Containment</td>
<td>Saturation</td>
</tr>
<tr>
<td></td>
<td>Saturation</td>
<td>Length</td>
<td>Shape</td>
</tr>
<tr>
<td></td>
<td>Hue</td>
<td>Angle</td>
<td>Length</td>
</tr>
<tr>
<td></td>
<td>Texture</td>
<td>Slope</td>
<td>Angle</td>
</tr>
<tr>
<td></td>
<td>Connection</td>
<td>Area</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Containment</td>
<td>Volume</td>
<td>Area</td>
</tr>
<tr>
<td></td>
<td>Shape</td>
<td>Shape</td>
<td>Volume</td>
</tr>
</tbody>
</table>

Mackinlay, Automating the Design of Graphical Presentations of Relational Information, ACM TOG 5:2, 1986
For quantitative data

<table>
<thead>
<tr>
<th>Mackinlay</th>
<th>Cleveland</th>
</tr>
</thead>
<tbody>
<tr>
<td>position</td>
<td>position along common scale</td>
</tr>
<tr>
<td>length</td>
<td>position along nonaligned scales</td>
</tr>
<tr>
<td>angle</td>
<td>length, direction, angle</td>
</tr>
<tr>
<td>slope</td>
<td>area</td>
</tr>
<tr>
<td>area</td>
<td>volume, curvature</td>
</tr>
<tr>
<td>volume</td>
<td>shading, color saturation</td>
</tr>
<tr>
<td>density</td>
<td></td>
</tr>
<tr>
<td>saturation</td>
<td></td>
</tr>
<tr>
<td>hue</td>
<td></td>
</tr>
<tr>
<td>texture</td>
<td></td>
</tr>
<tr>
<td>connection</td>
<td></td>
</tr>
<tr>
<td>containment</td>
<td></td>
</tr>
<tr>
<td>shape</td>
<td></td>
</tr>
</tbody>
</table>

Frames can increase accuracy

Similar to Ware’s adaptation of Nakayama et al.
Gestalt Principles: perception

- Based on visual gestalt (perception of ‘wholeness’)
- Descriptive rather than explanatory

Proximity
Similarity
Continuity (connectedness)
Closure
Figure/ground
Symmetry
Common fate (things moving together)

Information Visualization: Perception for Design.
Ware, Morgan Kaufmann, 2000
Gestalt Principles: perception

- Based on visual gestalt (perception of ‘wholeness’)

Gestalt Principles

Proximity Similarity

Information Visualization: Perception for Design.
Ware, Morgan Kaufmann, 2000
Gestalt Principles

- connectedness

Information Visualization: Perception for Design.
Ware, Morgan Kaufmann, 2000

Gestalt Principles

- Closure

Information Visualization: Perception for Design.
Ware, Morgan Kaufmann, 2000
Gestalt Principles

- Closure
- Overrules proximity, similarity

Information Visualization: Perception for Design.
Ware, Morgan Kaufmann, 2000

Gestalt Principles

- Symmetry
- Emphasizes relationships

Information Visualization: Perception for Design.
Ware, Morgan Kaufmann, 2000
Gestalt Principles

- Common fate
- http://tepserver.ucsd.edu/~jlevin/gp/time-example-common-fate/

Information Visualization: Perception for Design.
Ware, Morgan Kaufmann, 2000
Gestalt Principles

figure/ground

M. C. Escher print:
Study of the Regular Division of the Plane with Horsemen

http://www.illusionworks.com/
http://www.psychology.psych.ndsu.nodak.edu/mccourt/website/htdocs/HomePage/Projects/Brightness/Brightness%20Perception.htm

http://psy.ucsd.edu/~sanstis/SASlides.html