CPSC 583
Fall 2010
biovis

Sheelagh Carpendale
BioVis

• Data generation
 – Used to be expensive and time consuming
 – Now recent innovations make it cost effective and rapid
• Bottle neck of discovery now in the analysis process
• Leads to pull for visualization
Genetic Networks

- *Genes* are related through regulatory *proteins*.
- Each gene depends on certain protein to be activated or inhibited.
- Gene expression: a given gene’s varying rate of produced proteins.
- A gene can be activated or inhibited

A *genetic network* is defined as sets of genes that are regulated by sets of proteins.
GeneVis: goals

• To simulate and visualize a genetic network
• based on actual biological data.
• Support interaction with and modification of the simulated genetic network
Participatory Design

- in participation with Dr. M. Surrette, Department of Microbiology and Infectious Diseases at UofC
 - Participatory design
 - Iterative process
 - Flagella System (E. coli)

Sample Input Data

<table>
<thead>
<tr>
<th>Genes ID</th>
<th>Promoter</th>
<th>BasePairPosition</th>
<th>Produced Protein</th>
<th>Conc 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Decay</th>
<th>PromoterID</th>
<th>InhibitorID</th>
<th>AffinityFunc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>fliDC</td>
<td>1000500</td>
<td>1</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>100</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>fliL</td>
<td>2046264</td>
<td>0</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>100</td>
<td>20</td>
<td>1</td>
<td>0</td>
<td>0.85</td>
</tr>
<tr>
<td>3</td>
<td>fliE</td>
<td>2015586</td>
<td>0</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>110</td>
<td>20</td>
<td>1</td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>fliE</td>
<td>2030130</td>
<td>0</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>100</td>
<td>20</td>
<td>1</td>
<td>0</td>
<td>0.92</td>
</tr>
<tr>
<td>5</td>
<td>fliG</td>
<td>1152091</td>
<td>0</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>100</td>
<td>20</td>
<td>1</td>
<td>0</td>
<td>0.85</td>
</tr>
<tr>
<td>6</td>
<td>fliH</td>
<td>1960331</td>
<td>0</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>100</td>
<td>20</td>
<td>1</td>
<td>0</td>
<td>0.62</td>
</tr>
<tr>
<td>7</td>
<td>fliA</td>
<td>1987737</td>
<td>2</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>100</td>
<td>20</td>
<td>1</td>
<td>3</td>
<td>0.62</td>
</tr>
<tr>
<td>8</td>
<td>fliA</td>
<td>1118561</td>
<td>3</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>100</td>
<td>20</td>
<td>1</td>
<td>0</td>
<td>0.85</td>
</tr>
<tr>
<td>9</td>
<td>fliG</td>
<td>2001130</td>
<td>0</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>100</td>
<td>20</td>
<td>2</td>
<td>0</td>
<td>0.85</td>
</tr>
<tr>
<td>10</td>
<td>fliK</td>
<td>1134865</td>
<td>0</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>100</td>
<td>20</td>
<td>2</td>
<td>0</td>
<td>0.96</td>
</tr>
<tr>
<td>11</td>
<td>fliC</td>
<td>1974387</td>
<td>0</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>100</td>
<td>20</td>
<td>2</td>
<td>0</td>
<td>0.85</td>
</tr>
<tr>
<td>12</td>
<td>mecha</td>
<td>1350000</td>
<td>0</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>100</td>
<td>20</td>
<td>2</td>
<td>0</td>
<td>0.85</td>
</tr>
<tr>
<td>13</td>
<td>mecha</td>
<td>1756000</td>
<td>0</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>100</td>
<td>20</td>
<td>2</td>
<td>0</td>
<td>0.85</td>
</tr>
<tr>
<td>14</td>
<td>FliN</td>
<td>1148322</td>
<td>3</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>100</td>
<td>20</td>
<td>2</td>
<td>0</td>
<td>0.78</td>
</tr>
</tbody>
</table>
Existing Diagrams

- Genetic Network (E. coli Flagella system)
GeneVis: Simulation Model

• Genetic network functioning is based on probabilistic interactions.
• Five random factors:
 1) Protein direction of movement
 2) Protein distance of travel
 3) Protein decay rate
 4) Protein binding
 5) Reversible binding
Genetic Networks

- Genes make proteins.
- A gene’s production of a protein is inhibited or activated by proteins produced by other genes.
- These dependencies form genetic networks.
Gene expression
GeneVis

- Visual Representations:
 - Genes
 - Proteins
 - Gene expression

[Images of visual representations of genes, proteins, and gene expression]
GeneVis

- Grid-based simulation
- Intersection testing by grid position
GeneVis

• Simulating Gene Expression
GeneVis

Proteins

Gene

Chromosome

Expression History
Visualization

• Manipulating Gene Properties
 – Uses:
 • Mutation to genes in real-time during the simulation.
 • Editing gene properties prior to simulation.
 – This is the primary tool for adjusting the simulation
Visualization of Simulation

- Gene Expression Histories
Visualization of Simulation

Protein Interaction View

Protein Concentration View
Genevis: visualizing genetic regulation

with

CJ Baker
Fuzzy magic lenses
More about genetic data

Gemone – genetic material of a cell
 – Thought of as cellular instruction set
• Consists of 1 or more chromosomes
 – Contain DNA and/or RNA
 • Built of nucleotides A, C, G, and T
 • This sequence has directionality
• Some genetic visualizations from Ben Fry

http://benfry.com
Aligning Humans & Mammals

• Sequences of human DNA aligned with about a dozen other mammals, created as an illustration for *Seed Magazine*. The data is from the [Mammalian Genome Project](http://www.broadinstitute.org) at the [Broad Institute](http://www.broadinstitute.org). This is real alignment data, based on a more "functional" tool that browse this data. The first image is the final image, and the second image is an alternate.

• In each block, the white row is human DNA, additional rows are ordered roughly in their "evolutionary distance" from humans. First row after human is chimp, then rhesus macaque (rhesus monkey), elephant, dog, armadillo, cavia (basically a guinea pig), cow, and so on, down to monodelphis (opossum). Letters are colored when they differ from human, with Ts and As in red, Cs and Gs in blue.
Nature HapMap project

• When comparing the genetic code (the 3 billion A, C, G, and T letters) of two people, changes can be seen every one to three thousand letters. The changes are often inherited in groups, taking on a kind of "block" structure. Each difference is one of two letters (represented by the deeper and paler red colors).
• Ben Fry’s cover of the HapMap issue of the journal Nature.
• Depicts the CFTR region of the human genome
• This image represents blocks in the genetic profile of three different populations (data HapMap Project (hapmap.org)).
• top row shows a group of Yorubans from Africa,
• middle row a groups with Western European Ancestry
• bottom a set of Japanese and Han Chinese individuals.
• Higher genetic diversity -> less "block" structures
• Lower genetic diversity means more blocks.
• Height proportional to number of people in group with changes
http://benfry.com/isometricblocks/
Genome valence

• Ben Fry: 2002 Whitney Biennial

• a primary use of the data for biologists is to search for a sequence of letters and see if it's found in the genome of another organism.

• If the sequence is found, it is then possible, based on what's known about the sequence as it's found in the other organism, to guess the function of that sequence of letters.
Genome Valence

• visual representation of the algorithm (called BLAST) commonly used for genome searches.

• genome of an organism is made up of thousands of genes (34,000 for the human, 20,000 for the mouse, and 14,000 for the fruitfly). A gene is made up of a sequence of As, Cs, Gs, Ts that averages 1000 to 2000 letters apiece.

• BLAST breaks sequences of letters into 9 letter parts.

• Every unique nine letter set is represented as a point.

• Points are arranged from the center, with the most common sets on the outside, the less common towards the middle.
http://benfry.com/genomeivalence/
Gremlin:
An Interactive Visualization Model for Analyzing Genomic Rearrangements

Trevor M. O’Brien, Anna M. Ritz, Benjamin J. Raphael, & David H. Laidlaw

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2010
• Comparing human and human cancer genomes
• Looking for re-arrangements
 – Vary from nucleotides to larger structural
 – Deletions
 – Inversions
 – Inter-chromosomal translocations
• Insertions also occur – not in this project
Gremlin

• Human genome – 3 million nucleotide base pairs
• Many to one mapping (screen space)
• Model – 1D horizontal, linear, conventional ordering
Gremlin

• Comparing human and human cancer genomes

• Looking for re-arrangements
 – Vary from nucleotides to larger structural
 – Deletions
 – Inversions
 – Inter-chromosomal translocations

• Insertions also occur – not in this project
Gremlin

Mapping onto reference genome:

Fragment from experimental genome:

Fragment length: \(l \)

No rearrangement

Deletion

Inversion

Translocation
Gremlín
Gremlin

- Grey line – chromosome separation
- Green – deletions
- Brown – inversions
- Cyan – translocations plus arc
Gremlin
MizBee

• Comparing genomes – two species (fish)
• Questions
 – evolutionary positioning
 – genomic function
• Evidence
 – Shared ancestry
 – Shared function
MizBee

• Relatedness in tree of life
• Discovery of new genes in species genome
• Identification of sequences and mechanisms responsible for gene expression regulation
MizBee

- Relationship of conservation between features
- Features
 - Genes, transposons, introns, exons
- Similarities – how well features map
- Synteny – ‘in ribbon – same chromosome, contiguous’ -> abstraction ‘blocks’
MizBee

- Conservation relationships in blocks
- Proximity
- Location
- Size
- Orientation
- Similarity
MizBee

Conservation relationships
- proximity
- size
- orientation
- similarity

Multiple scales
- genome
- chromosome
- block
- feature

difficult to answer multiple questions across a range of scales using computational algorithms alone

visually encode conservation relationships at different scales to validate, analyze, and communicate results
MizBee

Design taxonomy

– Represent chromosomes as segments
– Encode conservation
– Layout variations
Design Taxonomy

<table>
<thead>
<tr>
<th></th>
<th>contiguous</th>
<th>discrete</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>linear</td>
<td>circular</td>
</tr>
<tr>
<td>separate</td>
<td>[diagram]</td>
<td>[diagram]</td>
</tr>
<tr>
<td>combined</td>
<td>[diagram]</td>
<td>[diagram]</td>
</tr>
</tbody>
</table>
Taxonomy: contiguous, linear, separate

- most similar match for features
- Low saturation encodes low similarity scores
Taxonomy: contiguous, linear, separate

- filtered - similarity threshold
Combining feature into blocks

Circles show counter examples – need to be close on src, close on dst, matched orientation

Taxonomy: contiguous, linear, separate
Taxonomy: discrete, segregated

Cinteny [Sinha07]
Taxonomy: circular, combined

Circos
[Krzywinski]
Taxonomy: circular, combined

Appolo
[Lewis02]
MizBee
MizBee
MizBee
stickleback

pufferfish
"The first time I saw my data in [MizBee] I was totally disappointed. The data was very noisy, and there were many small blocks that went to different chromosomes."

"Honestly, I don't know. I don't think I would ever have gotten here. The noise was very hard see in the scatter plots while [MizBee] is much more unforgiving."

- Genome-wide synteny through highly sensitive sequence alignment: Satsuma,
 M. Grabherr et al., submitted.
ABySS

ABySS-Explorer: Visualizing Genome Sequence Assemblies

Cydnee B. Nielsen, Shaun D. Jackman, Inanc, Birol, and Steven J.M. Jones

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2009
ABySS-Explorer employs a novel graph representation enabling biologists to examine the global structure of a genome sequence assembly.
ABySS

Example of a path ambiguity in an genome assembly resulting from a repetitive A-rich sequence shown as DNA sequences (a) and as an arrow diagram (b).
ABySS

- Different representations of sequence contigs labelled 1-4.

(a) Internal de Bruijn graph representation used by the ABySS assembly algorithm where contigs are represented as vertices and edges indicate a \(k-1\) nt overlap.

(b) Arrow diagram of the corresponding sequences.

(c) Graph representation used by ABySS-Explorer where contigs are represented as edges and vertices indicate a \(k-1\) nt overlap.
Example of vertex polarity using an overlap size of 6 nt. Both graph and sequence representations are shown.

When a contig edge is reverse-complemented, its orientation, labelled strand, and vertex pole connections are inverted.
ABySS

Contigs of different sizes appear as distinct shapes.

In this graph,

one oscillation corresponds to 100 nt such that smaller contigs appear as waves (e.g. contig “36+” = 3,000 nt)

larger contigs become solid shapes (e.g. contig “28+” = 11,700 nt).
ABySS

A read pair (short black sequences) connects contigs “8+” and “38+” (longer blue sequences) and the orientation is captured by a link edge (dashed blue line). (b) In the graph representation, the two contigs involved in the link are colored blue ("8+" and "38+") and are connected by a dashed blue line with the correct orientation and vertex polarities. (c) A similar link occurs between contigs “24-” and “51+”. (d) The inferred path through these contigs based on the unambiguous read pair information in (b) and (c) is highlighted in dark gray.
ABySS

ABySS-Explorer view of over 200,000 nt of human genome sequence.
ABySS

Detail of an assembled contig cycle.
ABySS

Detail of an ambiguous path (a) resolved by paired read information (b).
ABySS

(a) color scheme annotates roughly 1,000,000 nt of the reference human genome.
(b) Same annotations as in (a) indicate a global inversion event in the corresponding region of a lymphoma genome.
ABySS

(c) ABySS-Explorer view of roughly 200,000 nt assembled from the human lymphoma genome region depicted in (b).
ABySS

Detail of the inversion breakpoint in a human lymphoma genome.