Tree Coding
With Processing

An Introduction

Petra Isenberg
CPSC 599.28, 2008
Assignment 1

• Containment Layout of Phyllotactic Pattern

Images by:
Tobias Isenberg
Tillman Steinbrecher
Phyllotactic Pattern Creation

Diagram from: The Algorithmic Beauty of Plants (Prusinkiewicz, Lindenmayer)
Formula from: A Better Way to Construct the Sunflower Head (Vogel, 1978)
Image by: Tillman Steinbrecher
Phyllotactic Pattern Creation

\[n = 0, 1, 2, \ldots, n_{\text{max}} \]

\[\phi = n \cdot \alpha \]

\[r = c \cdot \sqrt{n} \]
Excursion: Polar Coordinates

- Described as a pair: \((r, \phi)\)

- From polar to Cartesian

 \[
 x = r \cos(\theta) \\
 y = r \sin(\theta)
 \]
Phyllotactic Pattern Creation

\[n = 0, 1, 2, \ldots, n_{\text{max}} \]

\[r = c \cdot \sqrt{n} \]

\[\phi = n \cdot \alpha \]
Changing α

$\phi = n \cdot \alpha$

$\alpha = 10.0^\circ$ $\alpha = 39.5^\circ$ $\alpha = 137.5^\circ$
Changing n

\[r = c \cdot \sqrt{n} \]
\[\phi = n \cdot \alpha \]
Changing c

\[r = c \cdot \sqrt{n} \]
Possible Layout

Arrange nodes in phyllotactic pattern at each level in each branch
Possible Layouts
Tree Layouts

• Two major types:
 – Containment
 – Node-Link
Containment Layout

- Children part of the display space of the parent
Examples – Voronoi Treemap

• Original Treemap in your book

[Balzer & Deussen, 2005]
Examples - Sunburst

[Stasko & Zhang, 2000]
Hands On

• Open Processing
• Create the initial program structure
• Save your sketch

```java
void setup( ) {
    size(660,600);
    noLoop(); //we don’t have to redraw continuously;
}

void draw( ) {
}
```
Adding external libraries

http://innovis.cpsc.ucalgary.ca/Courses/InformationVisualizationDetails

→ Material for Coding Trees
– Download:
 • JTreeLib.jar
 • Crimson.jar
 • Tree Data Sets -> extract and remember where to
Adding libraries in Processing

- Add crimson.jar and JTreeLib.jar
Using external libraries

import ca.ucalgary.innovis.*;
import java.io.File;

N AryTree tree;
N AryTreeNode root;

void setup() {
 size(660,600);
 noLoop(); //we don’t have to redraw continuously;
}

void draw()
{
}
JTreeLib

- NaryTree
 - root
- NaryTreeNode
 - getChildCount()
 - getChildAt(index)
 - getParent()
 - setNodeSize(w,h), getWidth(), getHeight()
 - setPosition(), getXPosition(), getYPosition()
 - getIndex(child)
JTreeLib

- **NAryTreeLoader**

```java
void setup( ) {
    size(660,600);
    noLoop();

    File file =
    new File("your path\smallTreeTest.tree ");
    //use a different file separator if !Windows (File.separator)

    tree = NAryTreeLoader.loadTree(file);
}
```
Coding a Tree Layout

• Today: 1D TreeMap & Icicle Plot
void setup() {
 tree = NArTyTreeLoader.loadTree(file);

 root = (NArTyTreeNode) tree.getRoot();
 root.setNodeSize(600,50);
 root.setPosition(30,30);
}

void draw(){
 //draw node in here
}

Drawing the first node
void draw(){
 rect((float)node.getXPosition(),
 (float)node.getYPosition(),
 (float)node.getWidth(),
 (float)node.getHeight());
}
What about all the other nodes?

• Think about it!
Solution

• The layout of every node (!root) depends on:
 – The size of its parent
 – The position of its parent
 – Its position among its siblings
Excursion: Tree traversal

• How to visit each node of the tree
 – Exactly once
 – In a systematic way
• Several methods
 – Classified by order in which nodes are visited
 – Most easily described through recursion
Excursion: Preorder Traversal

- Also called Depth-First

Algorithm:
- preorder(child)
- For(all the node's children)
- (or do something else with the node)
- Print node value
- preorder(node)

AHGFEDBCD
Excursion: Postorder Traversal

Algorithm:

postorder(node)
 for(all the node’s children)
 preorder(child)

print node.value
(or do something else with the node)

G F E I H D C B A
Which traversal do we need?

- The layout of every node (!root) depends on:
 - The size of its parent
 - The position of its parent
 - Its position among its siblings
Preorder

• Implement a function we can call recursively
 – Function should be called from draw()
 – Move drawing of node into separate function

```c
void draw(){drawNode(root);} 

void drawNode(NAryTreeNode node){
  calculate node position, size here
  draw node

  for all children of node: drawNode(child)
}
```
Some hints

- `NAryTreeNode parent = node.getParent();`
- `int nrSiblings = parent.getChildCount();`
- Do things differently for the root (parent==null);
- `int index = parent.getIndex(node); // Find position of node among siblings`
- `node.setSize(width, height); parent.getWidth(); parent.getHeight();`
- `node.setPosition(x, y); parent.getXPosition(); parent.getYPosition();`

```java
void draw(){drawNode(root);} 
void drawNode(NAryTreeNode node){
    calculate node position, size here
    draw node

    for all children of node: drawNode(child)
}
```
void drawNode(NAryTreeNode node) {
 int nrChildren = node.getChildCount();
 if (parent != null) {
 int nrSiblings = parent.getChildCount();
 float nodeWidth = (float) (parent.getWidth() / nrSiblings);
 int index = parent.getIndex(node);
 node.setPosition(index * nodeWidth + parent.getXPosition(),
 parent.getYPosition());
 // uncomment for icicle plot
 // node.setPosition(index * nodeWidth + parent.getXPosition(),
 // parent.getHeight() + parent.getYPosition());
 if (node != node) {
 for (int i = 0; i < nrChildren; ++i) {
 drawNode((NAryTreeNode) node.getChildAt(i));
 }
 }
 }
 // draw the node here: rect(…)
}
\}
\}
\}
Assignment 1

- Figure out design of containment phyllotree
- Apply knowledge about tree traversal, drawing
- Draw using examples