Assignment 1

Containment Layout of Phyllotactic Pattern

Images by: Tobias Isenberg, Tillman Steinbrecher
Phyllotactic Pattern Creation

Diagram from: The Algorithmic Beauty of Plants (Prusinkiewicz, Lindenmayer)

Formula from: A Better Way to Construct the Sunflower Head (Vogel, 1978)

Image by: Tillman Steinbrecher
Phyllotactic Pattern Creation

\[
\max \ldots, 2, 1, 0 \Rightarrow n_{\text{nn}} = \max \ldots, 2, 1, 0
\]

\[
\alpha \cdot \phi = n_{\text{nn}} \Rightarrow \n = 0, 1, 2, \ldots, n_{\text{max}}
\]

\[
\phi = n \cdot \alpha \quad r = c \cdot \sqrt{n}
\]
Excursion: Polar Coordinates

• Described as a pair: \((r, \phi)\)

• From polar to Cartesian

\[
x = r \cos(\theta)
\]
\[
y = r \sin(\theta)
\]
Phyllotactic Pattern Creation

\[n = 0, 1, 2, \ldots, n_{\text{max}} \]

\[r = c \cdot \sqrt{n} \]

\[\phi = n \cdot \alpha \]

2 \times 137.5^\circ

2, 1, 0
Changing α

$\phi = n \cdot \alpha$

$\alpha = 10.0^\circ, \ 39.5^\circ, \ 137.5^\circ$
Changing n

$$r = c \cdot \sqrt{n}$$

$$\phi = n \cdot \alpha$$

Angular constant: 137.5
Changing c

\[r = c \cdot \sqrt{n} \]
Possible Layout

Arrange nodes in phyllotactic pattern at each level in each branch
Possible Layouts
Tree Layouts

- Two major types:
 - Containment
 - Node-Link
Containment Layout

- Children part of the display space of the parent
Examples – Voronoi Treemap

- Original Treemap in your book

[Balzer & Deussen, 2005]
Examples - Sunburst

[Stasko & Zhang, 2000]
Hands On

- Open Processing
- Create the initial program structure
- Save your sketch

```java
void setup() {
  size(660,600);
  noLoop(); //we don’t have to redraw continuously;
}

void draw() {
}
```
Adding external libraries

http://innovis cpsc.ucalgary.ca/Courses/InformationVisualizationDetails

→ Material for Coding Trees
– Download:
 • JTreeLib.jar
 • Crimson.jar
 • Tree Data Sets -> extract and remember where to
Adding libraries in Processing

• Add crimson.jar and JTreeLib.jar

```java
void setup(){
    size(660,600);

    File file = new File("D:\programming\Processing\TutorialIIExample\wimbledon2004_
    tree = NaryTreeLoader.loadTree(file);
    root = (NaryTreeNode) tree.getRoot();
    root.setSize(600,50);
    root.setPosition(30,30);

```
Using external libraries

```java
import ca.ucalgary.innovis.*;
import java.io.File;

NAryTree tree;
NAryTreeNode root;

void setup( ) {
    size(660,600);
    noLoop();  //we don’t have to redraw continuously;
}
void draw( )
{
}
```
JTreeLib

- NAryTree
 - root
 - NAryTreeNode
 - getChildCount()
 - getChildAt(index)
 - getParent()
 - setNodeSize(w,h), getWidth(), getHeight()
 - setPosition(), getXPosition(), getYPosition()
 - getIndex(child)
void setup() {
 size(660,600);
 noLoop();

 File file =
 new File("your path\ smallTreeTest.tree ");
 //use a different file separator if !Windows (File.separator)

 tree = NAryTreeLoader.loadTree(file);
}
Coding a Tree Layout

• Today: 1D TreeMap & Icicle Plot
void setup() {
 [..]
 tree = NAryTreeLoader.loadTree(file);

 root = (NAryTreeNode) tree.getRoot();
 root.setNodeSize(600,50);
 root.setPosition(30,30);
}

void draw(){
 //draw node in here
}
void draw()
{
 rect((float)node.getXPosition(),
 (float)node.getYPosition(),
 (float)node.getWidth(),
 (float)node.getHeight());
}
What about all the other nodes?

• Think about it!
Solution

- The layout of every node (!root) depends on:
 - The size of its parent
 - The position of its parent
 - Its position among its siblings
Excursion: Tree traversal

- How to visit each node of the tree
 - Exactly once
 - In a systematic way

- Several methods
 - Classified by order in which nodes are visited
 - Most easily described through recursion
Excursion: Preorder Traversal

• Also called Depth-First

Algorithm:

```python
preorder(node)
    print node.value
    (or do something else with the node)
    for(all the node’s children)
        preorder(child)
```
Excursion: Postorder Traversal

Algorithm:

```
postorder(node)
  for(all the node’s children)
    preorder(child)
  print node.value
  (or do something else with the node)
```

G F E I H D C B A
Which traversal do we need?

- The layout of every node (!root) depends on:
 - The size of its parent
 - The position of its parent
 - Its position among its siblings
Preorder

• Implement a function we can call recursively
 – Function should be called from draw()
 – Move drawing of node into separate function

```c
void draw()
{
  drawNode(root);
}

void drawNode(NAryTreeNode node)
{
  calculate node position, size here
draw node

  for all children of node: drawNode(child)
}
```
Some hints

- `NAryTreeNode parent = node.getParent();`
- `int nrSiblings = parent.getChildCount();`
- Do things differently for the root (`parent==null`);
- `int index = parent.getIndex(node); // Find position of node among siblings`
- `node.setSize(width,height); parent.getWidth(); parent.getHeight();`
- `node.setPosition(x,y); parent.getXPosition(); parent.getYPosition();`

```java
void draw(){drawNode(root);} void drawNode(NAryTreeNode node){
   calculate node position, size here
draw node
   for all children of node: drawNode(child)
}
```
void drawNode(NAryTreeNode node)
{
 int nrChildren = node.getChildCount();
 NAryTreeNode parent = (NAryTreeNode) node.getParent();
 if (parent != null)
 {
 int nrSiblings = parent.getChildCount();
 float nodeWidth = (float) (parent.getWidth()) / (float) nrSiblings;
 node.setNodeSize(nodeWidth, parent.getHeight());
 int index = parent.getIndex(node);
 node.setPosition(index * nodeWidth + parent.getXPosition(),
 parent.getYPosition());
 // uncomment for icicle plot
 // node.setPosition(index * nodeWidth + parent.getXPosition(),
 // parent.getYPosition());
 // draw the node here: rect(...)
 for(int i = 0; i < nrChildren; i++)
 {
 drawNode((NAryTreeNode) node.getChildAt(i));
 }
 }
}
Assignment 1

- Figure out design of containment phyllotree
- Apply knowledge about tree traversal, drawing
- Draw using examples