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Gene regulation networks are a significant biological research area. Simulations
and visualizations of genetic processes are being created as biologists grapple with
the vast amounts of new genetic information. We present a genetic network simu-
lation environment that visualizes protein-gene interactions and concentrations as
they occur during the simulation. In addition, the layout of this genetic simulation
can be changed into a visualization of a conceptual model of the simulated genetic
network. The visual simulation and network visualization are integrated by ani-
mating the change between the simulation view and the visualization view. The
flagella system of Escherichia coli has been used to verify the results of this tool
and to provide a working model. This particle-based real-time visual simulations
of genetic networks allows for virtual experimentation using similar methodologies
of live experiments.

1 Introduction

Currently genetic research is generating an abundance of gene expression data
and developing intricate models of genetic networks. As the study of these
gene regulatory networks proceeds, further tools are needed to examine their
dynamics. To facilitate this research, a visual simulation enivronment has been
designed to provide biologists with a virtual tool, supporting the observation
of the movement and general concentration of constituent elements of a genetic
network. Any region currently being viewed displays a real-time simulation of
the proteins and genes present. In order to visually clarify the structure of the
genetic network currently being simulated a corresponding visualization of the
conceptual genetic network is provided. The visualization of the simulation
and the conceptual model of the network structure are integrated to increase
the potential for understanding the complexities of genetic networks.

The results obtained from both the simulation and visualizations are veri-
fied against biological data on Escherichia coli K12’s flagella system. This tool
has been developed to provide a type of virtual laboratory where experiments
can be run in a similar methodology to live experiment.
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2 Related Work

The simulation and visualization of genetic networks is an active research area.
McAdams has identified many important areas of genetic networks and their
importance to simulation !. Furthermore, modular design has been observed
within biology; suggesting the practical use of the conceptual models of genetic
networks 2. Previous work has focused in three main areas: the simulation, vi-
sualization and identification of genetic networks. Simulation of such networks
has been achieved through the use of differential equations?, logic 4, and re-
laxed (stochastic) rule sets®%. While the simulations are not visual, the results
of these simulations are displayed visually. The structures of the circuits are
presented but no real-time simulation information is shown. Other research
has focused on the strict visualization of conceptual genetic networks. These
works use large gene-protein databases? as input to create visual models of
this information. GeneNet pulls from an object-oriented database to visualize
a graph layout the represents the interactions ®. Michaels displays graphs of
concentration levels . Random Boolean Networks have also been developed
for this use!'?. The identification of genetic networks'!12:13:14 yses these same
concentration graphs to display the identified networks.

3 Simulating and Visualizing Genetic Regulation

To simulate a genetic network requires a conceptualization of the different
constituent parts that comprise such networks. Genetic networks consist of a
set. of genes that are related through a set of regulatory proteins. Each gene
requires some input and produces some output. The gene’s output (expression)
results in the production of constructive or regulatory proteins. A constructive
protein comprises the structural makeup of the organism. A gene receives input
through binding of regulatory protein(s) to one or more operator sites (DNA
segments). This binding stimulates or inhibits the gene’s expression. Each
regulatory protein binds to specific operator(s) in a DNA sequence dependent
manner based on biochemical laws of interaction. Thus only specific proteins
are able to bind to certain genes. Variations in binding affinity are based on
DNA sequence present within operator site. This conceptual rule set can be
exploited to develop simulation environments.

Figure 1 is a diagram of the visual representation of a gene. A gene is
visualized as two concentric spheres (Figure 1(a)). The outer circle holds the
genes operator sites. Figure 1(b)) shows a regulatory protein bound to an
operator site. When the appropriate promoter is bound the gene starts to
express its own regulatory proteins. The regulatory proteins being expressed
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Figure 1: (a) an inactive gene, (b) a gene with a bound regulatory protein, (¢) a gene
beginning to express proteins (d) a gene continuing to express proteins
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Figure 2: There is a single protein bound to the topside of the gene, which promotes its
expression. The proteins are being expressed by the gene and are distributing through the
environment

are visualized as appearing from under the inner circle (Figure 1)(c) and (d)).

3.1 The Simulation Environment

Large rule sets define genetic networks, which dictate the resulting course of
execution. These networks can be conceptually thought of as two or more
genes interrelated through expression. Even with small genetic networks, an
emergent pattern in execution or expression becomes apparent. This execution
is dynamic, however the overall result of the network remains the same. In
biology, protein concentrations create probabilistic environments. The higher
the concentration of a protein, the greater the likelihood it will come in contact
with a gene which requires it. The lower the concentration the less likelihood
of a protein binding. Random protein movement is used to simulate such
probabilistic distributions of protein over time.

3.2 The Gene Interaction

Within the simulation, genes require particular proteins to be activated. Each
gene has its own rule set, which defines when a gene is activated. During
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Figure 3: Left: Single gene bound and expressing, Right: Concentration formed from closely
packed proteins
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Figure 4: Sample section of environmental grid with random moving proteins and a single
gene

simulation the gene’s rule set is defined as follows:
If the gene’s operator site is vacant then
The gene proceeds with its normal activity.
If the gene’s operator site is bound with the right promoter protein then
The gene will express.
If the gene’s operator site is bound with an inhibitor protein then
The gene will not express.

In order for a regulatory protein to have a chance to bind to the gene it
must intersect the any point on the outer sphere (see Figure 2). This allows
a greater chance for operator site binding instead of only a single intersection
point. As part of the rule set each gene has an affinity, which is usually
expressed as a percentage. This is the percentage chance of the protein binding
to the gene during an intersection. The rate by which a gene expresses is
controlled by a concentration function. For this simulation the concentration
function is obtained from experimental data.
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Figure 5: Visualization of genetic network simulation

Multiple operator sites have also been included, allowing genes to bind
with one or more proteins. Each operator site has its own rule set including
affinity, required promoter protein and required inhibitor protein. Most activa-
tor/repressor occurrences can be described by a logical AND. Other Boolean
operators exist, but currently only AN D has been implemented. This result
decides whether or not the gene expresses.

3.8 Proteins

Regulatory proteins create the interconnections between genes and this sub-
sequently forms the genetic network. It is these proteins that need to move
in a manner to correctly simulate a probabilistic environment. This is ac-
complished by having each protein randomly move within the spatial grid.
The grid imposes a directional restriction on the proteins to eight directions
(Figure 4). This grid is also used to identify the protein-gene intersections,
eliminating computationally expensive intersection tests between genes and
proteins (Figure 3). Before the simulation starts, each grid-cell covered by a
gene is assigned the gene’s ID (Figure 4). This allows intersection testing by
only one comparison between the grid value and the location of a protein.
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At every point in time during the simulation, each protein is moved ran-
domly in one of the eight directions. Initially, the proteins are emitted from
the centre of the gene and are free to roam randomly throughout the spatial
grid. Through time the proteins distribute themselves throughout the system.
Each protein is represented using a diffused circle, which can blend with other
overlapping proteins (Figure 3). When multiple types of protein are present,
blending; still occurs and gives multiple coloured sections where certain protein
concentrations are stronger than others (Figure 5).

All gene parameters can be altered with the use of a dialog box. Any
changes made to these parameters result immediately within the dynamic sim-
ulation. The genes name, base pair position, produced protein, decay, protein
colour, and concentration function can be changed within the top half of the
dialog box. The bottom half allows alterations to each operator site, which
contains affinity, required promoter protein, and required inhibitor protein.
Once Apply is pressed, the simulation is updated with these changes.

3.4 Chromosome

All genes are positioned within a circle representing the gene set’s chromosome.
The actual physical geometry of a chromosome is not essential to the simu-
lation because proteins rapidly diffuse after transcription. Therefore a circle
was choosen to ensures that each protein’s travelling distance is the same to
each side of the chromosome. This is accomplished by positioning the circle
equidistant within the spatial grid with the edges of the grid wrapping around.
The position of each gene on the circle is calculated using its real base pair
position. A base pair range for the gene set is originally provided and each
gene is positioned around the circle within that base pair range.

3.5 Gene Ezpression Analysis

In recent years cluster analysis has become an invaluable asset to biologists in
studying gene networks. It allows the simultaneous analysis of multiple gene
expressions. Furthermore, similar gene expressions can be clustered together
giving a temporal ordering of expression. The information about how the gene
is expressing is visualized with the use of colour. Often using one colour to
indicate no expression and a second colour to indicate full expression. The
transitional states are shown as a gradient between these two colours. In the
simulation environment parameters can be changed and virtual experiments
rerun to identify differences and similarities in expression. In our simulation,
each gene has it own real-time expression analysis, which is visualized using
the two-colour scheme just described.
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Figure 6: Gene expression analysis: These images show two different simulation runs

The top rectangle depicts the network dynamics of the simulation. The
bottom rectangle shows actual cluster analysis results from experiments, which
can be inputted through a file. This allows for the direct comparison between
the experimental and the simulated. Each one has a time scale from zero to the
current time, and updated continuously as the network progresses. Each bar’s
colour is determined on a scale from no expression (white) to full expression
(black). The number in the right side of the bar shows that specific gene’s
current number of active proteins (the number of expressed minus the number
of decayed). All expression bars are aligned to the right side of the screen for
comparison between individual genes (Figure 6).

It is also possible to output the simulations expression analysis results
to a file for numerical comparison to the actual cluster analysis. This allows
for smaller variations to be seen, however, the resolution of this comparison
is limited since results from the simulation and biology are never exactly the
same.

3.6 Discussion

This simulation uses grid-based random protein movement in a wrap-around
torodial environment. In this environment genes are placed in a circle accord-
ing to their position in the chromosome. These three factors together help
minimize the effect of the model’s spatial layout on the probabilistic devel-
opment of the genetic network. However, while these factors work well for
modelling the behaviour of the genetic regulation network, this simulation is
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Figure 7: Cene network hierarchy of the flagella operons in E. colil®

visually complex and specific structures of genetic networks are hard to dis-
cern from simply watching the simulation. Therefore, we have also created a
visualization of the resulting network and to make the connection between the
simulation and the network layout explicit, we must animate the transition
from the visual simulation to the network layout.

4 Structuring the Layout of the Genetic Network

The simulation structures the spatial layout of the genes through the use of
their position in the chromosome. In this section we explore using the inter-
actions between the genes to reveal a network organization that results in a
different spatial organization.

4.1 Determining Layout Structure

Consider the genetic regulation network that creates the flagella of Escherichia
coli. The protein-gene interactions within this network have been identified 3.
One method of visualizing these interactions is shown in Figure 7.

Here spatial organization is based on temporal ordering of gene expression.
Each row holds the genes for a temporal class. The topmost gene is the first to
express. The genes in the second row require a regulatory protein from a gene
in the previous row. This organization can be calculated recursively by ana-
lyzing protein-gene interaction for the entire network. This organization can
be calculated recursively by analyzing protein-gene interaction for the entire
network. An algorithm has been developed that can discover this organiza-
tional structure from the simulation (Figure 7). The algorithm checks every
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gene for its’ earliest expression time point and places that gene within the
correct temporal class. This results in a graph structure for the network. This
structure can be displayed using a graph layout in which the nodes represent
the genes, the rows represent the temporal classes, and the lines represent the
fact that a regulatory protein from one gene is used to control the expression
of the other gene.

Unfortunately, the directed graph previously described does not completely
represent the interactions of genetic networks. Genetic networks usually also
contain feedback loops. The presence of these feedback loops often interferes
with the ease of displaying genetic networks with basic two dimensional graph
layouts, since these feedback loops frequently make the network non-planar.
However, feedback loops are prominent and important mechanisms in gene
regulation. These loops provide for self-regulation within networks. This self-
regulation can exist between one or more genes. When only one gene is present,
the gene produces the very protein that regulates itself. When multiple genes
are involved, the self-regulation controls multiple productions with the net-
work. There are also positive and negative feedbacks. A positive feedback
promotes the continued expression of the network’s architecture while a neg-
ative feedback inhibits the expression of that network. A negative feedback
enables the gene network to terminate its own operation once a particular
point of execution is reached. Feedbacks are intrinsically difficult to model
and visualize with clarity. Directional graphs can very quickly become hard
to read when they include multiple edge-crossings due to the inclusion of the
connections that represent feedbacks 6.

To alleviate this problem, our approach brings the graph layout into three
dimensions. Moving to three dimensions allows us to use the extra dimension
to visualize feedback loops without creating edge-crossings. Each temporal
class is taken from a 2D line to a 3D ring. Each gene within that temporal
class is placed evenly around the ring. The rings are indicated by dashed lines.
This keeps them visually distinct from the network connections. Forward or
promoting protein regulation connections are visualized with curved lines that
proceed from the previous the ring to connect regulated genes (Figure 8).

Since feedbacks can cause crossings to occur, they are visualized using
straight lines. These lines travel through the centre of the rings, visually
separating forward regulation from feedbacks and alleviating the edge-crossings
caused by the feedback connections. To assist in viewing the rings they can be
rotated to view from any angle, giving the user a better ’feel’ for the network
architecture.



Figure 8: Conceptual genetic network ring visualization

4.2  Morphing

With the separation of the simulation and the genetic network visualization
there needs to be some method of cognitively connecting the two. Both visu-
alizations are dramatically different in appearance, however, both contain the
same information shown in different ways. Morphing is used to animate the
connection between these two visualizations. The morphing can be done back
and forth between both visualizations and can be interrupted at any point
during the movement. This is accomplished by translating the genes’ current
position to its new position. The animation allows for the user to cognitively
ascertain the relation between the two visualizations.

5 Results and Validation

The validation of the results of our simulation and visualization have been built
into the system. This was done so direct comparisons can be done to verify the
results against empirical results from biological experiments. The simulation is
verified through the use of a gene expression analysis. At any point the results
of the simulation can be compared with the real results shown directly below.
Furthermore, text output of the simulation results is possible and can be com-
pared numerically with the actual biological results present within the system.
To verify the conceptual visualization of genetic networks, a comparison of
the biologically formulated networks with the system produced visualization
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can be done. This comparison is only valid for well-known networks where
the network architecture is certain. More skeptical networks do not provide
any form of validation towards the visualization since they could be incorrect.
The validity of any such experiment depends on the correctness of the data
one is comparing too. Subsequently, in both the simulation and visualization
the highly studied E. coli K12 has been used to validate our results. Cluster
Analysis has been obtained for the flagella system of E. coli and was used as
a comparison to the dynamic cluster analysis of the simulation. Furthermore,
the well-known structure of this network has been identified which provides a
comparison for the gene network visualization.

6 Conclusions

As biology continues to explore the molecular level, conceptual models become
a necessity to understand these complex interactions. Visualization of such
interactions may not only assist understanding, but also help biologists to fur-
ther enhance their conceptual models. By constructing a visualization and
simulation of genetic networks in a generic way may provide a possible frame-
work for other genetic networks under research. The flagella system has been
used to test and verify the network, revealing similar self-regulation cycles be-
ing present in the simulation as observed in biology. The simulation has been
created as close to biological systems as possible, while the network visualiza-
tion depicts the networks structure. Morphing has been used to cognitively
integrate the two visualizations together to further understanding. This tool
demonstrates visually both the protein-gene interaction as well as the under-
lying network structure to provide biologists with a new tool to enhance their
knowledge of this topic area.
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