
JunctionBox for Android: An Interaction Toolkit for Android-based
Mobile Devices

Lawrence FYFE
InnoVis Group

University of Calgary
2500 University Drive NW
Calgary, AB T2N 1N4

Canada
ljfyfe@ucalgary.ca

Adam TINDALE
Alberta College of

Art + Design
1407 14 Avenue NW
Calgary, AB T2N 4R3

Canada
adam.tindale@acad.ca

Sheelagh CARPENDALE
InnoVis Group

University of Calgary
2500 University Drive NW
Calgary, AB T2N 1N4

Canada
sheelagh@ucalgary.ca

Abstract

JunctionBox is an interaction toolkit specifically de-
signed for building multi-touch sound control inter-
faces. The toolkit allows developers to build inter-
faces for Android mobile devices, including phones and
tablets. Those devices can then be used to remotely
control any sound engine via OSC messaging. While
the toolkit makes many aspects of interface develop-
ment easy, the toolkit is designed to offer considerable
power to developers looking to build novel interfaces.

Keywords

Android, OSC, mobile, interaction, toolkit.

1 Introduction

The Android operating system [Google, 2012a],
developed by Google Inc., runs on a wide variety
of mobile devices, including phones and tablets.
With the easy availability of these devices, it be-
comes desirable to develop sound and music ap-
plications for them.

One application scenario involves using inter-
faces to control sound in which the interface is
one computer and the sound generator is another.
The advantage of this scenario is that the quality
of the audio on mobile devices will likely not be as
good as with combinations of audio interface and
speakers in which both are designed to provide the
highest quality audio experience. Another related
advantage is the possibility of multi-channel sce-
narios that go beyond the two channels available
on portable devices.

For example, an Android device would handle
input by a performer, with the option of project-
ing the interface, while another computer handles
all sound processing. This is not a hypothetical
scenario but is the current musical practice of the
first author. With this kind of scenario, certain
aspects of development, like messaging between

computers, can be made easier by a toolkit that
puts commonly used or repetitively coded features
into a single place for reuse.

JunctionBox is an interaction toolkit for build-
ing sound control interfaces that addresses this
scenario. The toolkit is written in Java and is de-
signed as a library for the Processing development
environment [Reas and Fry, 2006]. JunctionBox
bridges the interaction gap between the visual de-
sign possibilities offered by Processing and the
sound control possibilities afforded by the Open
Sound Control (OSC) protocol [Wright, 2005].
Figure 1 shows how JunctionBox relates these two
functions. It does this by handling touch inter-
actions and by making it easy for developers to
map those interactions to OSC messages (via the
JavaOSC library [Ramakrishnan, 2003]). Junc-
tionBox has mapping features that are described
in detail in an earlier paper by the current authors
([Fyfe et al., 2011]).

Figure 1: How JunctionBox serves as a hub for
both sound and visuals.



2 Background

Other toolkits exist that have features similar to
that of JunctionBox. The MT4J toolkit [Laufs et
al., 2010] has many features for multi-touch in-
teraction building and is available for use with
Android. However, MT4J, lacks the OSC map-
ping capabilities that make JunctionBox a toolkit
for building sound and music control applications.
TouchOSC [hexler.net, 2012] offers functionality
that is similar to what is offered by JunctionBox
in which widgets can be mapped to custom OSC
messages. Widgets include faders, push buttons
and rotary controls and others that are are skeuo-
morphs of controls for physical hardware devices
like mixers.

Instead of simply offering widgets, JunctionBox
is a full-fledged development toolkit that is meant
to be used by developers who are not necessar-
ily interested in skeuomorphs. The JunctionBox
approach to interaction design can be summed
up as BYOW, for build your own widgets. The
focus of JunctionBox is to provide functionality
like OSC message mapping while offering the full
range of visual design options available via Pro-
cessing. This approach to toolkit design is meant
to encourage greater creativity in the design of
both interactions and interfaces.

3 JunctionBox for Android

The original version of the JunctionBox toolkit
was not developed for Android. However, since it
was written in Java, porting to Android did not
require a complete rewrite of the existing code.
The main difference between the standard Java
version and the Android version of JunctionBox
is that TUIO [Kaltenbrunner et al., 2005] is not
needed on the Android version since Android de-
vices have a separate system for handling touch
interactions. Android-based systems get touch in-
formation via handling the data contained in the
MotionEvent class [Google, 2012b].

Both versions of JunctionBox contain a Dis-
patcher class that is responsible for handling
touch interactions that ultimately get mapped to
OSC messages for controlling audio. Figure 2
shows the relationship of the MotionEvent class
to JunctionBox classes including the Dispatcher.
The mapping process is exactly the same for both
the standard version of JunctionBox and the An-
droid version.

Figure 2: JunctionBox/Android internals with
classes shown as boxes with solid lines.

Differences in using the Dispatcher in code have
been minimized with both versions using the same
code for construction. A new Dispatcher will
take four arguments: the width and height of the
screen/touch interface and a socket destination
for OSC messages. The following code constructs
a new Dispatcher object:

Dispatcher dispatcher = new Dispatcher(

screenWidth ,

screenHeight ,

"192.168.1.1",

7000);

All code written for the standard version of
JunctionBox will work with Android with the
addition of a single method made available in
the Android Dispatcher class. The additional
method, handleMotionEvent(), gets touch infor-
mation from the MotionEvent class. The Dis-
patcher’s handleMotionEvent() method is utilized
by creating a dispatchTouchEvent() method in
the code for the Processing sketch:

boolean dispatchTouchEvent(MotionEvent ev) {

dispatcher.handleMotionEvent(ev);

return true;

}

While only a single additional method is re-
quired for the Android version of JunctionBox, in-
ternally an important difference in touch location
handling is that TUIO touch tracking data is nor-
malized relative to the size of the interface while
for Android devices, touch position is absolute.
This difference is made transparent to the devel-
oper and the same code will work in both systems
with only one minor change, the addition of the
new handleMotionEvent() method. Making dif-
ferences like this transparent is part of the Junc-
tionBox approach of making development easier
without taking away the ability to build highly
customized interfaces.



4 Interfaces

The first author of this paper wrote the code for
JunctionBox not only to provide the community
with a toolkit for creating networked instruments
but for his own performance practice. That prac-
tice currently consists of the building of touch in-
terfaces for Android devices that run the interface
to handle touch input. That interface then com-
municates with another computer running audio
via OSC. The audio computer used to develop the
following interfaces runs Ubuntu Linux, JACK
and Pd.

4.1 Orrerator

The Orrerator interface has widget-like controls
but with a much more stylized appearance. It is
designed both as a general instrument that could
be used for a variety of pieces but also specifically
for the composition by the first author entitled
Sol Aur.

The metaphor for the Orrerator is the Orrery
or a model of the solar system, as shown in Figure
3. The sound engine controlled by the Orrerator
is written in Pd and features four FM oscillators.
The interface has four planet buttons that light up
when toggled by simply touching the particular
planet. Each planet button turns a single FM
oscillator on or off.

In addition to on or off controls, each planet
button can be rotated around its orbit by touch-
ing the orbit area and rotating it around the cen-
ter. Orbit areas look increasingly lighter towards
the inner planet. This change of rotation will de-
tune that particular FM oscillator from its base
frequency by a factor of between one and two with
the starting vertical position being one and a full
rotation back to that same position being two.
Orbital rotations are limited to 360 degrees from
the starting position.

On the left and right edges of the interface are
two sliders: the left slider changes the index of
modulation and the modulation frequency and
the right slider changes the gain of all four os-
cillators.

4.2 Distance2

The Distance2 interface is designed specifically
for a composition entitled Distance 2 (Toshi
Ichiyanagi) by the first author. It features ten
tiles numbered 1-5 with half of the tiles being

Figure 3: The Orrerator interface with the first
and third planets active and playing.

white and half black. The black tiles feature re-
versed numbers 1-5. Each of the tiles can be
moved anywhere in the interface with a single
touch. When the tiles are moved into the tar-
get in the center of the interface and the touch
is released, a sound file corresponding to that tile
number is played. Reversed tiles play the same
sound reversed. Figure 4 shows the tiles and the
target. Sound files play until either they have
reached the end of the file or if a touch is ap-
plied while playing. This allows the sounds to be
paused and moved across the target.

Figure 4: The Distance 2 interface with tile 2 in
the center set to play at normal rate.

Tiles placed in the very center of the target are
played back at normal playback rate. Tiles in the
next circle out play at half that rate. The next
circle plays at one-third rate and the outermost
circle plays at one-quarter rate. If a tile is paused
by touch and moved from one target circle to an-



other, the sound will pause and resume at the new
playback rate.

Tiles placed in the circle but on the left of the
vertical dividing line play in the left channel while
tiles on the right side play in the right channel.
Tiles placed in the center (normal rate) play in
the center of the stereo field.

The sound engine for this piece is written in Pd
with a custom file playback control mechanism de-
signed by the first author. The 5 sound files are all
various recorded clips from an interview with ex-
perimental composer Toshi Ichiyanagi. Distance
2, the piece, is based on a piece by Ichiyanagi
called Distance [Ichiyanagi, 1961] in which the
performer must be at least three meters away
from his or her instrument while playing. In a
time of computer music in which wireless net-
working makes this kind of setup trivial, the no-
tion of distance can be explored in other ways. In
the context of the piece, distance from the center
of the target represents the recognizbility of the
recorded clips with the clips getting further away
from the original as the tiles get further away from
the center.

5 Summary

Bringing the JunctionBox toolkit to the Android
operating system allows developers to build sound
and music control interfaces on an increasing ar-
ray of touch devices. With a focus on inter-
face coding rather than providing pre-built wid-
gets, JunctionBox provides developers with an op-
portunity to create new touch-based interactions
with highly customized visuals. Two example in-
terfaces, the Orrerator and Distance2, show some
of the creative interfaces that can be built using
the toolkit.

6 Acknowledgements

We would like to thank the Alberta College of Art
+ Design, the Canada Council for the Arts, the
Natural Science and Engineering Research Coun-
cil of Canada, SMART Technologies, the Cana-
dian Foundation for Innovation, and the Alberta
Association of Colleges and Technical Institutes
for research support. We would also like to thank
the members of the Interactions Lab at the Uni-
versity of Calgary for feedback and support during
the development of this project.

References

Lawrence Fyfe, Adam Tindale, and Sheelagh
Carpendale. 2011. Junctionbox: A toolkit for
creating multi-touch sound control interfaces.
In Proceedings of the Conference on New Inter-
faces for Musical Expression, pages 276–279.

Google. 2012a. Android. http://developer.
android.com/index.html.

Google. 2012b. Motionevent. http:
//developer.android.com/reference/
android/view/MotionEvent.html.

hexler.net. 2012. Touchosc. http://hexler.
net/software/touchosc.

Toshi Ichiyanagi. 1961. Distance.

Martin Kaltenbrunner, Till Bovermann, Ross
Bencina, and Enrico Costanza. 2005. Tuio - a
protocol for table-top tangible user interfaces.
In Proceedings of the 6th International Work-
shop on Gesture in Human-Computer Interac-
tion and Simulation.

Uwe Laufs, Christopher Ruff, and Jan
Zibuschka. 2010. Mt4j - a cross-platform multi-
touch development. In Proceedings of the 2nd
ACM SIGCHI symposium on Engineering in-
teractive computing systems, EICS ’10, New
York, NY, USA. ACM.

Chandrasekhar Ramakrishnan. 2003. Javaosc.
http://www.illposed.com/software/
javaoscdoc/.

Casey Reas and Ben Fry. 2006. Processing: pro-
gramming for the media arts. AI & Society,
20(4):526–538.

Matthew Wright. 2005. Open sound control:
an enabling technology for musical networking.
Organised Sound, 10(3):193–200.


