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Abstract

This examination considers projections from three space into two
space, and in particular their application in the visual arts and in
computer graphics, for the creation of image representations of the
real world. A consideration of the history of projections both in the
visual arts, and in computer graphics gives the background for a
discussion of possible extensions to allow for more author control,
and a broader range of stylistic support. Consideration is given
to supporting user access to these extensions and to the potential
utility.

Keywords: Computer Graphics, Perspective, Projective Geome-
try, NPR

1 Introduction

For tens of thousands of years, human beings have been attempt-
ing to represent the world around them in various pictorial forms.
Today, denizens of the modern world are veritably bombarded with
these depictive images in their day-to-day lives. We have learned
how to readily conceptualise, realise, and interpret the transforma-
tion of our three dimensional world1 into a two dimensional repre-
sentation. This was certainly not always the case – the problem of
creating such meaningful representations is complex, and the rel-
ative ease with which we can do so today is a tribute to the great
minds who have addressed the problem in the past, not a testament
of the problem’s triviality.

When it came to implementing projections for the purposes of
creating images in computer graphics, computer scientists naturally
drew on the existing body of work that had been laid down to teach
students of art about the principles of projection. This was neces-
sary – as computer scientists learned to put images on the screen,
they had to learn the fundamental formulae of the subject, so to
speak. There is, however, a much wider variety of experimentation
with these principles, and fundamental formulae in the visual arts
than has yet been allowed for in computer graphics.

The potential for development here is very great. One of the most
inhibiting factors for more experimentation with projective repre-

1This is not to imply that the universe really is merely three dimensional,
only that we perceive it as such. This generalisation will be made throughout
this document.

sentation is the technical difficulty in the more mathematical as-
pects of projection. This is exactly where computers can be of great
assistance to the authors of representations. It is difficult enough to
get all of the angles right in a planar geometric projection. Get-
ting the curves right in a non-planar projection requires a great deal
of skill. An algorithm, however, could provide a great deal of as-
sistance. A few computer scientists have realised this, and begun
work on developing a broader conceptual framework for the imple-
mentation of projections, and projection-aiding tools in computer
graphics.

This examination considers this problem of projecting a three
dimensional phenomenon onto a two dimensional media, be it a
canvas, a tapestry or a computer screen. It begins by examining
the nature of the problem (Section 2) and then look at solutions
that have been developed both by artists (Section 3) and by com-
puter scientists (Section 4). Finally, discussion of future directions
for slightly more grounded conjecture on the subject is included
in Section 5, and conclusions based on no results whatsoever are
offered in Section 6.

2 The Trouble with Projections

Projecting from three dimensions into two dimensions is a problem-
atic business, and something that we often take for granted. Our eye
has evolved such that we gather and interpret information from the
world around us in a particular way. Our retina can be described as,
not a plane, but a two manifold embedded in three space, as illus-
trated in Figure 1. So, in a way, the process of vision involves just
such a projection, from three space onto this two-manifold.

Figure 1: The eye is a spherical screen. Image blatantly plagarised
without permission from Flocon and Barre [10].

Still, how can we replicate this process in a manner that allows
us to create a representation of the world around us on a plane, or
indeed, on any two manifold embedded in three space? Because we
have the biological support mechanism for this process (the eye and



retina), and the work of many great masters on the subject, it is too
easy for us to dismiss this problem as trivial.

Figure 2: A tesseract projected into three dimensions, and then
into two dimensions. It is very difficult to interpret just what is
being represented here. Harry J. Smith, http://pw1.netcom.com/ hj-
smith/WireFrame4/tesseract.html

In order to dispel this notion of triviality, it may be useful to
consider the case of a four dimensional projection into three di-
mensions. This is not a facility for which evolution has provided
humanity with biological support, so we must rely more upon the
visualisation. Figure 2 shows a tesseract, or hypercube, projected
from four dimensions into three dimensions, and then down into
two dimensions. It is extremely difficult to interpret what is going
on in this image (at least for this not-so-humble-student).

Providing the ability to rotate the cube, both in the x-z and y-z
planes, and the x-h and y-h planes makes things a bit easier – Fig-
ure 3 shows the tesseract rotated to nearly0 in xh, and nearly�=2
in yh. This is the equivalent, in three space, of looking straight at
one face of a cube, such that it looks like a two-dimensional square.
Starting from this position, it is easier for us to recognise. Still, the
exercise makes a very good point about projections. They are not
necessarily simple, or easy or intuitive, and they are certainly not
trivial.

Any projection from a higher dimension into a lower dimension
(including from three space into two space) is going to be lossy.
A point in three space (x; y; z) that is converted into a new point
(x0; y0), must necessarily lose some information. The problem then
becomes the question of exactly what information can be thrown
away such that the representation still conveys a desired meaning to
its intended audience. The decision about what information can be
lost, and what information should be retained really depends on the
purpose for which the projection is being made, and the message it
is intended to convey.

The aspect of this problem considered in this examination is
the question of how computer graphics can give the author of
a given representation control over what information can be dis-
carded, what information must be kept, and in what manner the
latter is to be used to make the final representation.

Figure 3: The projected tesseract is rotated such that it resembles
a cube in three space. Harry J. Smith, http://pw1.netcom.com/ hj-
smith/WireFrame4/tesseract.html

3 Projections in the Visual Arts

One of the greatest problems that people originally faced when try-
ing to figure out just how to project their three dimensional world
into two dimensions was understanding – the techniques had not
been clearly developed. The other was skill. It is difficult enough
to learn to draw projections of three dimensional objects when you
have someone to teach you, examples to study, and a great deal of
literature on the topic[4].

In this section, we consider the development of projective tech-
niques in the visual arts, paying particular attention to the great va-
riety of techniques that are available. Although there are now many
formulaic ”how to” manuals2 available for beginners, the manner in
which accomplished artists develop their own projections is hardly
so.

3.1 Eastern Tradition

The application of projections in the eastern tradition is a less stud-
ied phenomenon than the western tradition, at least less studied in
literature available in the languages known to this author, given the
time available for this examination. However, this is not to say that
eastern artists were less skilled in the use of perspective than their
western counterparts, or less creative in their application of projec-
tive techniques.

Artist David Hockney makes some consideration of the question
of perspective in his studies of eastern scroll paintings [11]. These
scrolls can be as nearly a tenth of a kilometer long. This is an ex-
treme sort of medium, and it required an extreme sort of solution to
the problem of projecting from three dimensions into two dimen-
sions.

As a scroll unfolds, there are many different viewpoints, and
many different projection techniques are thus necessarily em-
ployed. The artist would transition from one to another, sometimes

2The termformulaic is in no way meant as dismissive. As mentioned,
learning to draw in perspective is a complex process, and methods for teach-
ing the fundamentalformulaeare necessary, and creatively well developed
[7, 2, 25]



Figure 4: Japanese Scroll Fragment. The lower view shows the lines of perspective drawn over the picture. The picture contains multiple
viewpoints – one off to the right, and one off to the left. Hishikawa Moronobu,Scenes in a Theatre Tea-House (fragment), The British
Museum.

even showing one object from two different view points at once.
Figure 4 shows an example of this sort of transition. The right hand
side of the depiction (including the building and the right hand wall)
is viewed from the right, while the left hand wall is viewed from the
left hand side. These two perspectives are blended such that there
is no jarring discontinuity, and a tree cleverly covers the in between
area where confusion might arise.

3.2 Western Tradition

While there was some sparse use of perspective projection, as we
presently understand the term, in classical times, the techniques
were either lost or unused for the largest part of the medieval
period[4]. This doesn’t mean that distant objects were not being
represented, it only means that the methods used to project these ob-
jects into two dimensions were different. Figure 5 shows an exam-
ple of the style of projections that were commonly used. The more
distant side of the fence in this image is in no way foreshortened.
By its higher position on the canvas, its connectedness with the rest
of the fence, and its occlusion by the lower fence and the unicorn,
the viewer can deduce the fence’s depth information [20, 21].

During the Renaissance, the notion of infinitely distant vanish-
ing points re-emerged. Masters like Filarete, Francesca, da Vinci
and Durer began experimenting with what we now understand as
perspective projection. Each of these masters had his (or in rare but
notable cases, her) own techniques, and the variety of techniques
was bounded only by the skills and imaginations of artists who were
experimenting with them [6, 9, 12, 24].

Figure 6 shows a simple instructive plate done by one of these
renaissance artists, Jan Vredeman de Vries. This illustration shows
us what is basically our modern concept of three point perspective.
While de Vries clearly understood this concept for simple models,
he found a much more complicated view was necessary in most
practical situations. Figure 7 is perhaps the most famous of all of de
Vries’ plates – a relatively simple illustration, and already the lines
of perspective and foreshortening are getting extremely complex.
Nearly every object in this scene has its own vanishing point. The
only common factor is that all the vanishing points terminate on the
horizon.

3.3 Modern Experiments

The popularisation of photography in the nineteenth century led to
a sort of soul searching in the art world. What could artists show,
that photographers could not? Photography was cheaper, faster, and
more accurate than anything that even the most studied and accom-
plished traditional artists could hope to replicate. Traditional visual

Figure 5: Medieval wool warp. Depth information about the back
of the fence is conveyed by the position on the canvas (higher vs.
lower), the connectedness with the rest of the fence, and with occlu-
sion by the unicorn, and the front part of the fence. Artist Unknown,
Unicorn in Captivity, wool warp, wool, silk, silver and gilt wefts,
368 cm x 251.5 cm, Metropolitan Museum of Art



Figure 6: Renaissance Engraving. Depiction of a simple form of perspective projection. Jan Vredeman de Vries,Perspective No. 2,
Engraving, 1568.

Figure 7: Renaissance Engraving. Artist’s horizon lines of perspective have been thickened for presentation here. Even in this relatively
simple demonstration, they are quickly becoming extremely complicated. Jan Vredeman de Vries,Perspective No. 28, Engraving, 1568.



artists (to say photographers were/are not artists would be both in-
accurate, and a disservice) believed they still had a unique way of
representing the world, and they wanted to show it [5, 16].

The impressionist movement was one of the primary beneficia-
ries of this soul searching. It would probably be inaccurate to say
that impressionism would not have existed if photography had not
been developed. None the less, the popularity of the impressionist
movement probably owed much to photography, and the art world’s
reaction to it. The very world ”impressionism”, came from an early
painting by the artist Claude Monet entitledImpression: Sunrise.
It shows what Monet, and what later practitioners were getting at –
they wanted to convey more in their representation of reality than
a mere flat image – they wanted to convey animpressionof that
reality.

The impressionists used light colours and a spontaneous style,
much in contrast to the more rigorousacademicstyle that had been
previously dominant. Many impressionist works are accomplished
with a loose collection of brush strokes, in which the viewer must
pull the subject out of a seemingly chaotic canvas. As an inten-
tional side effect of this mental composition process, the interpre-
tive functions of the human brain allow an almost three dimensional
conception of the subject of an impressionist painting.

This is an approach to projection that more or less tricks the
brain into interpreting the three dimensional information. While
it is worth mentioning in the context of representing three space in
two space, it will not be further considered here, since this discus-
sion will limit itself to geometric projections that can be modelled
in computer graphics.

Figure 8: Cubist portrait. The face, suit and hands of the individual
are quite recognisable, as well a still life to his right, even though
they are all depicted from different perspectives. Pablo Picasso,
Daniel-Henry Kahnweller, 1910, Oil on canvas, 101.1 cm x 73.3
cm, Art Institute of Chicago.

After impressionism and post-impressionism had past, many

artists again began to rethink the question of just how to convey
a representation of three dimensions on a two dimensional canvas.
Out of this consideration came Pablo Picasso and Georges Braque,
and the notion of cubism. Cubism demonstrated that it was pos-
sible, and even desirable (depending on one’s artistic tastes), to
show a completely unrealistic representation of the three dimen-
sional world that still conveyed meaning[3, 17].

Figure 8 shows an example of a cubist portrait by artist Pablo
Picasso. The facial features, suit and hands of the individual who is
portrayed are all evident, especially when viewed from several me-
ters away, as originally intended. As well, it is possible to make out
a still life to the subject’s right hand side. Yet, all of these elements
are portrayed from entirely different points of view, and placed dis-
jointly onto the canvas where the artist felt it was appropriate.

Figure 9: Cubist painting. The architecture of this structure is not
shown in a realistic manner, but distorted to convey the impression
desired by the artist. Robert Delaunay.Saint Severin No. 1. 1909,
oil on canvas, 116 cm x 81 cm, Private Collection, Switzerland.

Not all cubist depictions are disjoint. The principles of the move-
ment are also illustrated in Figure 9, where the architecture of the
church of Saint Severin is curved and distorted to impact the viewer
in the manner desired by the artist. This is in no way a formu-
laic projection of three dimensional space onto the two-dimensional
canvas. It is a creative development of those traditional techniques
to convey a desired impact.

Even with impressionism and cubism, the practice of projection
in the visual arts is hardly settled. In the middle of the twentieth
century, artist M. C. Escher experimented extensively with warping
and twisting the traditional rules of perspective[8, 23]. Figure 10
shows an example of this. While each local part of the image seems
to make sense, the whole picture does not fit together. Figure 11, a
study done by Escher for the lithograph shown in Figure 10 reveals



Figure 10: MC Escher,House of Stairs, Lithograph, 1951, Litho-
graph, Catalogue 099, 1968 catalogue.

Figure 11: MC Escher,Study for a Lithograph, Staircase, 1951,
Ink, Catalogue 099b, 1968 catalogue.

the technique that Escher used to create this effect. He has warped
the projection in such a way that objects that should be behind the
viewer are actually located in front. Figure 12 shows another print
by Escher in which a similar technique is used to include multiple
viewpoints on a single object in one image. This figure will be
discussed more in later sections.

Escher and the cubists are in no way the last artists to play with
the projections from three dimensional objects onto a two dimen-
sional canvas. The photo-realists have also done so – taking reality
and manipulating it to their liking. Figure 13 shows an example of
a photo-realist painting by Richard Estes. The distortion applied
by Estes is most visible in the bus at the left centre of the painting
[14, 15].

In summary, consideration of how to represent three dimensional
space in two dimensions is still underway in the visual arts. Exper-
imentation with different projective techniques has been going on
since classical times, and shows no sign of stopping in the future.

4 Projections in Computer Graphics

The application of perspective in computer graphics has long been
considered a solved problem. Indeed, the mathematical underpin-
nings of currently used projections were in place long before the
first electronic computers were even developed.

4.1 Standard Applications

The mathematical theory of perspective was investigated by Gerard
Desargues as early as 1639. Further developments were made in the
next century by Gaspard Monge, who is considered to be the ”father
of descriptive geometry”. By 1864, which marked the publication
of Albert Church’s often-citedElements of Descriptive Geometry,
the discipline of descriptive geometry was well founded [4].



Figure 13: Photo-realist painting. The projective distortion that is applied by the artist is most clearly visible in the bus at the centre right of
the painting. Richard Estes,Park Row Looking Toward City Hall, 1992, oil on canvas, Louis K. Meisel Gallery.

One of the earliest pieces on the application of projective ge-
ometry to computer graphics was a Ph.D. thesis by Lawrence G.
Roberts, actually in Electrical Engineering. In his thesis, Roberts
develops algorithms for a simple viewing transformation which in-
volves dividing a point’s coordinates by its distance from the view-
point. Roberts applies homogeneous coordinates to this problem,
and gives a matrix representation of the transformation[19].

Many developments and more than a decade later, Ingrid Carl-
bom and Joseph Paciorek published their seminal paperPlanar Ge-
ometric Projections and Viewing Transformations. In this paper,
they concisely ordered and documented many of the commonly
used planar geometric projections, and illustrated how these pro-
jections could be accomplished with homogeneous transformation
matrices. Their ordering of projections is shown in Figure 14.

A planar geometric projection is defined by a projection plane
and a set of projectors from that plane out into the world. Points
in the space being projected are drawn at the point at which the
projector which intersects them meets the projection plane.

All of the planar geometric projections that are described here
can be accomplished in computer graphics by means of a transla-
tion, a rotation and a projective transformation. Thus, given a point
Q, the projected pointQ0 can be found byQ0 = P � R � T � Q,
whereP is the projection matrix,R is the rotation matrix, andT
is the translation matrix. SinceR andT are the same for any pro-
jection type, and are well studied in most introductory graphics text
books, we consider them only briefly. To translate the projection
plane to the origin, it is only necessary to find the plane’s normal,
and the closest point on the plane to the origin. The translation can
then be done as follows, where(nx; ny; nz) represents the projec-
tion plane’s normal, andd the distance of that closest point.

T =

2
64

1 0 0 dnx
0 1 0 dny
0 0 1 dnz
0 0 0 1

3
75

The rotationR can be computed in a number of ways. Here,

we use spherical coordinates, which seems by far the most elegant
method available. Figure 15 shows us a depiction of spherical co-
ordinates. In this system, our point at(x; y; z) is considered as a
vector. The symbol� is used to represent the angle between the
x axis and the vector being represented. This can be calculated as
tan�1(y=x). Similarly,� represents the angle between the vector
and the z axis, and can be calculated ascos�1(z=�) where� is the

length of the vector (denoted as
^

r in Figure 15).

x = �cos(�)sin(�)
y = �sin(�)sin(�)
z = �cos(�)

The rotationR then becomes a rotation about thez axis by��,
and a rotation about they axis by��. We can compose this by
multiplying the two standard matrices for such transformations to-
gether, as follows:

R =

2
64

cos(�) �sin(�) 0 0
sin(�) �cos(�) 0 0

0 0 1 0
0 0 0 1

3
75

2
64

cos(�) 0 sin(�) 0
0 1 0 0

�sin(�) 0 cos(�) 0
0 0 0 1

3
75

=

2
64

cos(�)cos(�) �sin(�) cos(�)sin(�) 0
sin(�)cos(�) cos(�) sin(�)sin(�) 0
�sin(�) 0 cos(�) 0

0 0 0 1

3
75

We now continue with our discussion of projection. In the dis-
cussion below, it may be assumed that the above transformations
have already been applied, and we must now consider how to for-
mulateP , our projection matrix.



Figure 12: MC Escher,Up and Down, 1947, Lithograph, Catalogue
087, 1968 catalogue.

Figure 14: Tree showing the breakdown of planar geometric pro-
jections. After Carlbom and Paciorek [4]. Blatantly pilfered from
some guy’s power point presentation that the author of this exami-
nation got off the web and now can’t find the URL for to reference
properly.

Figure 15: Spherical Coordinates Representation of
a Point. Unrepentantly pilfered from MathWorld at
http://mathworld.wolfram.com/SphericalCoordinates.html.

4.1.1 Parallel Projections

In a parallel projection, the viewer is located at infinity. As a re-
sult, all of the lines of projection are parallel to one another. This
is extremely useful in architecture and design, and in other situa-
tions where measurements need to be taken from drawings. Since
the lines are parallel, it is possible for precise measurements to be
made.

Figure 16: Orthographic projection. The projectors are all parallel
to one another and orthogonal to the projection plane.

Orthographic projections are particularly useful for this sort of
measurement taking, and they are often given with multiple views
(front, top, side, and possibly interior) so that the object(s) being
depicted can be entirely reconstructed. Figure 16 shows a graphical
representation of this mechanism – notice that the lines of projec-
tion are not only parallel to one another, but also perpendicular to



the viewing plane.
An orthographic projection can be accomplished quite easily in

computer graphics. Once we have accomplished ourR andT trans-
formations, as described above, it is a simple matter of eliminating
thez coordinate as follows. This is the identity matrix, with the unit
value in the row corresponding toz missing.

P =

2
64

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

3
75

Axonometric projections are similar in nature to orthographic
projections, in that the projectors are parallel to one another, and
perpendicular to the axis. Unlike orthographic projections, how-
ever, the viewing angle is chosen such that an object being

represented is viewed from an an-

Figure 17: Trimetric
axonometric projection

gle off of its main axes. Unfortunately,
there are problems with this view. Be-
cause the human brain is trained to un-
derstand perspective projections, it can
easily misinterpret this sort of projec-
tion. Figure 17 shows one way this can
happen. Parallel lines receding into the
distance are most readily interpreted to
mean the object in question gets larger.
A similar problem occurs with circles –
they are interpreted as elliptical.

In computer graphics, axonometric projections can be accom-
plished in the same way as orthographic projections, but with an
additional rotation multiplied into the mix to account for the differ-
ence in viewing angle.

Figure 18: An oblique projection. The lines of projection are paral-
lel, but they are not perpendicular to the projection plane.

Axonometric projections are commonly divided into three cat-
egories, based on the angles between the projection plane and the
object’s main axes. If all three of these angles are equal, projection
is called isometric. If two of them are equal, the projection is di-
metric. Finally, if none of them are equal, the projection is referred
to as trimetric.

Oblique projections also have parallel projectors, but the projec-
tors are not perpendicular to the projection plane. This mechanism
is modelled in Figure 18. This projection is very similar to an ax-
onometric projection, and has much the same benefits and issues
involved. If the angle is well selected, and the object is carefully po-
sitioned according to a known rule-set, it can produce good results,
and because the foreshortening ratio (the object’s projected length
divided by its true length) is uniform, accurate measurements can
still be made from drawings in this style.

By convention, oblique projections where the angle between the
projection plane and the projectors is�=4 are called cavalier. The
foreshortening ratio of a cavalier projection is one. The object’s
projected length is the same as it’s true length. Oblique projections

at an angle ofarccot(1=2) (about 63 degrees) are referred to as
cabinet projections. Their foreshortening ratio is one half, that is to
say that lines not parallel to the view plane are shortened by a factor
of one half.

Oblique projections can be accomplished in computer graphics
by means of a shearing effect, representing the angle of obliqueness,
and then an orthographic projection. This can be represented as
follows, wherea andb are the shearing factors.

P =

2
64

1 0 a 0
0 1 b 0
0 0 0 0
0 0 0 1

3
75

4.1.2 Perspective Projection

Figure 19: Perspective projection. The projectors are taken as lines
from a centre of projection or eye point, to the point being pro-
jected.

Of the traditionally used projections, perspective projection is
arguably the most realistic. A graphical depiction of the mechanism
behind this technique is shown in Figure 19. Because the lines of
projection are not parallel in a perspective projection, the

foreshortening ratio does not

Figure 20: Perspective

exist, as such. We will be able
to see this more clearly once we
have worked out the mathemat-
ics behind the perspective pro-
jection.

In order to calculate the ma-
trix representation of a perspec-
tive projection for computer
graphics, similar triangles are
used, as shown in Figure 20. If
we place the centre of projec-
tion (COP) at the origin (a sim-
ple translation from the position assumed above), we can see thatx
is to z asx0 is to d. To calculatex0, then, we cross multiply, and
achievex0 = x � z=d. We calculate similarly fory0, and can derive
the following perspective projection matrix, whered represents the
distance from the centre of projection to the projection plane.

P =

2
64

1 0 0 0
0 1 0 0
0 0 0 0
0 0 1=d 1

3
75

It can be seen from this that the foreshortening ratio of a per-
spective projection is not a constant, but a function. This student has
never seen a name given to this function, and so will arrogantly pre-
sume to call it aforeshortening function, so that it can be referred
to later. In this standard perspective projection, theforeshortening
functionsin x, y andz are given by Equation 1.



fx = z
d

fy = z
d

fz = 0
(1)

4.2 Recent Developments

Recently, more work has been done on allowing some amount of
variation in these traditional techniques. Singh has done work on
non-linear perspective in [22], and Agrawala et al have considered
the blending of multiple projections in [1]. Wood et al created
multi-perspective panoramas, which very much resemble some of
the artwork from the eastern tradition. They did this by creating
various windows on an animation from different perspectives. The
windows were used to create guides, which could be turned into
higher quality images by an artist, and then composited together to
form a final sequence [26].

Paul Rademacher has developed techniques which allow the ac-
tual geometry of an object to change depending on the position of
the viewer[18]. These techniques were extended by D. Martin et al,
into a system which allowed a variety of warps to be created based
on the observer’s position in the scene [13].

There is clearly interest in expanding the ability of the artist to
manipulate projections. The remainder of this examination will at-
tempt to address the question of where we can go from here – of
what can be developed in this area, how it can be developed, and
how we can test the utility of these ideas.

5 Future Work

This paper has attempted to present a background to the way in
which perspective is currently considered, both in the art world,
and in computer graphics. New tools have always given artists new
ways of doing perspective, from the camera obscura on. The next
question to ask is – how can computers develop new ways of doing
perspective, that cannot be done in other media?

6 Conclusions

Every visual medium has its strengths and weaknesses. Computer
graphics, as a medium is particularly strong in providing mathe-
matical support to artists for tasks that were previously tedious, or
impossible due to the technical challenges involved. Experimen-
tation with projections from three space to two space is just such
an area, and the development of tools to support the authors of two
dimensional representations of three space could prove extremely
valuable.

Although there are pedagogical formulae for these projections in
the visual arts, there is also a great deal of experimentation. One
of the biggest things holding back this experimentation is in fact
the technical difficulty involved in developing new twists on old
methods. It took some very smart people, masters like Francesca,
da Vinci and de Vries, to come up with the fundamental rules that
we use today, though even they had a broader understanding of the
topic than we allow for today in computer graphics.

This is certainly an area where computers can help artists out a
great deal, providing mathematical support for the foundations of
warped and twisted projections.
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