A Buffer Framework for Supporting Responsive Interaction in Information Visualization Interfaces

Tobias Isenberg
André Miede
Sheelagh Carpendale
Main Message

The buffer framework provides faster and more responsive interaction for large displays with many objects and multiple users.
Overview

- Introduction & Motivation
- Buffer Concept
- Realization
- Applications
- Implementation & Results
- Summary & Future Work
Introduction and Motivation

application courtesy of Uta Hinrichs [Hinrichs et al., 2005]
Complexities and Limitations

- number of objects
- complexity of interaction between objects and controlling structures
- complexity of interaction between several controlling structures
- simultaneous user-interactions
- complexity in run-time and development
Buffer Concept: Borrowing from Computer Graphics

- buffers as means to store data in computer graphics (e.g., z-buffer, G-buffers)

- property sampling on regular grid
- fast lookup of discrete values
- interpolation for smooth animations
Buffer Concept: Borrowing from Physics

- composition of multiple effects
- treat buffers as physical (force) fields
- example: composition of intensity buffers → treat as fields

- simple buffer adding
- simpler “interface physics”
Buffer Concept: Borrowing from Swarm Intelligence

- single swarm entities
- local awareness
- local processing

- divide-and-conquer strategy
- local aspect of entities & local character of buffers
Realization of the Framework

- **visualization objects** carry information

- **buffer stack** for several properties of interface

- buffer contents controls **object behavior**
Examples for Buffer Control

resolution of buffers & display independent
Examples for Buffer Control
Realization of the Framework

- interface components organize objects

- interface logic: interface components visualization objects
Final Framework Layout

Visualization Objects

Interface Components
(with own local buffer stacks)

Global buffer stack
Applications

- support of responsive interfaces on large displays
- extension of systems to support many more objects
- seamless integration of input support
Applications
Implementation and Hardware

- OpenGL + Trolltech Qt
- hardware support for rendering tasks
- SMART DViT: two concurrent inputs
Table Setup 1: 1280 x 2048 \approx 2.6 \text{ Mp}
Table Setup 2: 2800 x 2100 \approx 5.9 \text{ Mp}
Results

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Objects @</th>
<th>FPS</th>
<th>Objects @</th>
<th>FPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1280x2048</td>
<td>ca. 100</td>
<td>25-30 fps</td>
<td>1000</td>
<td>25-30 fps</td>
</tr>
<tr>
<td>2.6 Mp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2800x2100</td>
<td>ca. 100</td>
<td>5-10 fps</td>
<td>200/400/1500</td>
<td>30/20/7.5 fps</td>
</tr>
<tr>
<td>5.9 Mp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- All tests performed with the camera at its maximum resolution and settings.
- FPS values represent the average frame rate during testing.
Summary

- framework for responsive interaction
- speed gains through storing data in buffers
- sampled, discrete values fast to look up
- local awareness and local processing
- application logic in autonomous objects
Future Work

- continue development of prototype and its comparison with previous applications
- explore new application domains that take full advantage of the buffer framework
Main Message

The buffer framework provides faster and more responsive interaction for large displays with many objects and multiple users.
Thanks for your attention!