Visual Representation from
 Semiology of Graphics by J. Bertin

Slides by: Sheelagh Carpendale

From a communication perspective

"Communication is too often taken for granted when it should be taken to pieces." (Fiske'91)

Two basic schools of thought

1. Process

- the common sense approach
- concerned with the transmission of messages
- senders and receivers encode and decode
- message is transmitted through some media (TV, voice, hair style, etc.)
- to communicate is to effect another's state of mind or behaviour
- effect should as intended, no intention -> no communication
- involves examination of transmission and explanations of failure
- sender responsible/ receiver viewed as quite passive

From a communication perspective

"Communication is too often taken for granted when it should be taken to pieces." (Fiske'91)

Two basic schools of thought

2. Semiotics

- a study of signs and the cultures that use them
- a sign is defined as anything that stands for something other than itself
- an exchange of meaning
- recognition that people understand a given set of signs differently
- alternate interpretations rather than failures
- a message is made up of signs, signs are then interpreted
- interpreter/receiver/user rises in importance
- reading becomes active, discovering meaning, putting signs together in terms of ones background and culture
- different readings possible, in fact probable.

Creating a visualization

1. Understand a system of related information and tasks.
2. Create a mapping from the data (digital representation) to a visual representation.
3. Present this visual representation on the computer screen.
4. Provide methods of interacting with this visual representation that can include methods for varying the presentation and methods for varying the representation.
5. Verify the usefulness of the representation, the way it is presented and/or and its interaction methods.

What is meant by representation?

- Fuzzy general usage, common mis-definition - " A represents B to the extent that A resembles $B^{\prime \prime}$
- does one twin represent their sibling?
- does one item of the assembly line represent another?
- does a painting of Churchill represent him?
- Solving a problem simply means representing it so as to make the solution transparent ... (Simon, 1981)
- Useful representations
- allow people to find relevant information
- information may not be present
- information may be present but hard to find
- allow people to compute desired conclusions
- computations may be difficult or "for free" depending on representations

Creating Visual Representations

- A practical look at how to create the visual mapping that is capable of communicating
- to communicate with words we first need to know phonemes, the letters and how they combine to create words
- note that phonemes and letters are meaningless in themselves
- are there corresponding visual units?
- there is still considerable debate on this subject
- in the meantime, we will look at a practical approach of how we can create visual representations that can be understood.

Jacques Bertin

Bertin's disclaimer

- Bertin considers
- printable, on white paper,
- visible at a glance
- reading distance of book or atlas
- normal and constant lighting
- readily available graphic means

Where does one start?

- with marks!
- for us, pixels
- Visual Variables: how can we vary marks?
- by where we place them
- by how we place them (Bertin calls this 'implantation')
- by their visual characteristics (Bertin calls these retinal variables)

The Plane

- Points
- "A point represents a location on the plane that has no theoretical length or area. This signification is independent of the size and character of the mark which renders it visible."
- a location
- marks that indicate points can vary in all visual variables
- Lines
- "A line signifies a phenomenon on the plane which has measurable length but no area. This signification is independent of the width and characteristics of the mark which renders it visible."
- a boundary, a route, a connection
- Areas
- "An area signifies something on the plane that has measurable size. This signification applies to the entire area covered by the visible mark."
- an area can change in position but not in size, shape or orientation without making the area itself have a different meaning

Visual Variables

Slides by: Sheelagh Carpendale

Visual Variables

- position
- changes in the $\mathrm{x}, \mathrm{y},(\mathrm{z})$ location

- size
- change in length, area or repetition

- shape
- infinite number of shapes

- value
- changes from light to dark

- orientation
- changes in alignment

- colour
- changes in hue at a given value

- texture
- variation in pattern

- motion

Visual Variables on a computer?

- motion
- direction, acceleration, speed, frequency, onset, 'personality
- saturation
- colour as Bertin uses it largely refers to hue, other readily available colour channels (i.e. saturation)
- flicker
- frequency, rhythm, appearance
- depth? ‘quasi’ 3D
- depth, occlusion, aerial perspective, binocular disparity
- illumination
- transparency

Visual Variables

Characteristics of visual variables can be

- selective
is a change in this variable enough to allow us to select it from a group?
- associative
is a change in this variable enough to allow us to perceive them as a group?
- quantitative
is there a numerical reading obtainable from changes in this variable?
- order
are changes in this variable perceived as ordered?
- length
across how many changes in this variable are distinctions perceptible?

Visual Variable: Position

\checkmark - selective

- associative

- quantitative
- order
- length

Slides by: Sheelagh Carpendale

Visual Variable: Size

- selective

- associative

- quantitative

- order

- length
- theoretically infinite but practically limited
- association and selection ~ 5 and distinction ~ 20

488

Size

- Categories of size,
- height of a column,
- area of a sign,
- number of equal signs

Slides by: Sheelagh Carpendale

Size

points

areas

Visual Variable: Shape

へ. selective

- asSociative

\neq. quantitative
- order
- length

- infinite

Slides by: Sheelagh Carpendale

Shape

- Constant size variation in shape
- Quantity is read through the legend

Slides by: Sheelagh Carpendale

Shape

Slides by: Sheelagh Carpendale

Shape

points
lines

areas

Visual Variable: Value

- selective

- associative

- quantitative
- order

- length
- theoretically infinite but practically limited
- association and selection $\sim<7$ and distinction ~ 10

Value

- Categories of value,
- various degrees between black and white,

Value

Slides by: Sheelagh Carpendale

Visual Variable: Value

- Ordered, and can not be re-ordered

Slides by: Sheelagh Carpendale

Visual Variable: Value

- Is not quantitative
(oil consumption in Europe base unit 1 million tons)

Slides by: Sheelagh Carpendale

Visual Variable: Value

- Value intensity can be mis-read as density (population of Paris)

Visual Variable: Colour

- selective

- associative

- quantitative
- order

$\sqrt{ } \cdot$ length
- theoretically infinite but practically limited
- association and selection $\sim<7$ and distinction ~ 10

Colour

Slides by: Sheelagh Carpendale

Colour

- Categories of colour,
- changes in hue at equal value

Slides by: Sheelagh Carpendale

Colour

Slides by: Sheelagh Carpendale

Encoding

- Common advice says use a rainbow scale
- Marcus, Murch, Healey
- problems with rainbows

Visual Variable: Orientation

$\sqrt{ }$ • selective

$\sqrt{ }$ • associative

F. quantitative
F. order

- length
- ~ 5 in 2 D ; ? in 3D

Slides by: Sheelagh Carpendale

Orientation

- Categories of orientation,
- variations is line or line-pattern ranging from the vertical to the horizontal

Orientation

points
lines

areas

Slides by: Sheelagh Carpendale

Visual Variable: Texture

- selective

- associative

- order

- length
- theoretically infinite

Texture

- Categories of texture,
- changes in fineness or coarseness of the marks in an area
- can be combined changes in characteristics

Texture

points

lines
areas

Textures

Visual Variable: Motion

- Selective
- motion is one of our most powerful attention grabbers
- associative
- moving in unison groups objects effectively
F. quantitative
- subjective perception
F. order
?
- length
- distinguishable types of motion?

Motion

Slides by: Sheelagh Carpendale

Information from 4 French communes

The communes A B
C
D
Areas
4
4
1
1
(10s of km^{2})
Population
4
8
2
4
(1000s of persons)
Density of pop. 1
2
2
4
(\%)

Point Representations

Slides by: Sheelagh Carpendale

Line Representations

Slides by: Sheelagh Carpendale

Line Representations

Slides by: Sheelagh Carpendale

Area Representations

C	A
D	B

Area proportional to size
population

2	4
4	8

2	1
4	2

Slides by: Sheelagh Carpendale

Area Representations

C	C	A	A	A	A
C	C				
D	D	B	B	B	B
D	D				

population

2	2	4	4	4	4
2	2				
4	4	8	8	8	8
4	4		8		

density of population

2	2	1	1	1	1
2	2		1		
4	4	2	2	2	2
4	4				

Slides by: Sheelagh Carpendale

First group: Diagrams

- When correspondences can be established between
- all the divisions of one component and
- all the divisions of another

Second group: Networks

- When correspondences can be established among
- all the divisions of the same component
steps

1. record correspondences
2. deduce simplest structure
fig. 3 - all components capable of conversing
fig. 4 - recording information
fig. 5 - organizing spatially

Supposing one group speaks, one listens $->$ diagrams such as fig. 6 or fig. 7.

Slides by: Sheelagh Carpendale

Third group: Maps

- When correspondences can be established among
- all the divisions of the same component
- and can be arranged according to geometric order
steps

1. Reproduce geometric order
2. record correspondences
fig. 9 - map of towns and roads
fig. 10 - network of this information

fig. 11 - diagram of this information

Fourth group: Symbols

- When correspondences are not established in the representation but between the marks in the representation and the reader
- learned
- culturally tied - meaning comes from agreement
- diagrams, networks, maps support internal processing
- symbolism (language) relies on

v㜔

 $\because B+4$

Other groups: ?????

- Are there other basic groupings?
- that are not just a combination of these four?
- Depiction (realistic representation)
- Historically,
- symbolism,
- depiction
- maps
- diagrams
- networks
- question - as we go through recent work, will any constitute a new grouping, why?

Use of Space

IMPOSITION

Traffic accident victims France 1958

pedestrians $\quad 28,951$
bicycles $\quad 17,247$
motorcycles $\quad 74,887$

4 wheel vehicles 63,071

Traffic accident victims France 1958

Slides by: Sheelagh Carpendale

Linear Construction

- Straight line represents the total
- quantities are shown proportionally
- fig 1 - as given
- fig 2 - sorted horizontal
- fig 5 - sorted vertical
- fig. 3 - spatially proportional partial quantities related to same base
- fig 4. - countable representation
- uses only 1 dimension of the
 plane - leaves the other free for ...

Orthogonal Construction

- Spatial differentiation of parts
- juxtapose categories with quantity
- fig 6, 7 - categories horizontal, quantities vertical
- fig 9 - categories vertical
- fig 8 - proportion as $\%$ emphasized
- fig. 10 - linked categories ... trends
- total is not portrayed but separate quantities easier to
 compare

Rectilinear Elevation

- Quantity is represented by area
- 2nd dimension is not used, variation in marks (vv -size) is used
- fig 11, 12 - areas lined up horizontally
- fig 13-diagonal arrangment
- fig 14, 15 - superimposed
- total is not portrayed but comparison of parts more difficult

Slides by: Sheelagh Carpendale

Circular Construction

- Circular version of rectilinear construction
- total is portrayed
- amounts designated by angle at centre and length of

circumference

- fig 18 , is fig. 5 curved
- fig 16, 17, 19 - portion or whole circle
- comparing centre angles is
 easier than circumference lengths (fig 19 vs fig 18)

Polar Construction

- Polar construction is a circular version of orthogonal construction
- fig. 20, is fig. 6 curved
- fig. 23 - visual measure of quantity added

- total not portrayed
- parts less easily comparable

Circular Elevation

- As in rectilinear elevation areas are proportional to quantity
- fig. 24 , is fig. 11 curved
- fig. 27 - uses area, fig 22. uses length
- fig. 26 area of circle, fig 23 length of line
- fig 25. - Nightingale Rose

References

- Jacques Bertin, Semiology of Graphics: Diagrams, Networks, Maps. Translated by W. J. Berg. University of Wisconsin Press 1983 (in french 1967)
- John Fiske, Introduction to Communication Studies. (2nd edition). Routledge, London. 1991.

