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Abstract

Structural comparison of large trees is a difficult task that is only
partially supported by current visualization techniques, which are
mainly designed for browsing. We present TreeJuxtaposer, a sys-
tem designed to support the comparison task for large trees of sev-
eral hundred thousand nodes. We introduce the idea of “guaran-
teed visibility”, where highlighted areas are treated as landmarks
that must remain visually apparent at all times. We propose a
new methodology for detailed structural comparison between two
trees and provide a new nearly-linear algorithm for computing the
best corresponding node from one tree to another. In addition, we
present a new rectilinear Focus+Context technique for navigation
that is well suited to the dynamic linking of side-by-side views
while guaranteeing landmark visibility and constant frame rates.
These three contributions result in a system delivering a fluid ex-
ploration experience that scales both in the size of the dataset and
the number of pixels in the display. We have based the design deci-
sions for our system on the needs of a target audience of biologists
who must understand the structural details of many phylogenetic,
or evolutionary, trees. Our tool is also useful in many other ap-
plication domains where tree comparison is needed, ranging from
network management to call graph optimization to genealogy.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types

Keywords: information visualization, Focus+Context, realtime
rendering, tree drawing, phylogenetic tree

1 Introduction

Biologists have been working towards discovering the evolution-
ary tree of the history of species since the time of Darwin. Until a
decade ago, the main information available to guide them was key
morphological features found by painstaking observation of living
organisms and the fossil record. The scope of these morphological
analyses was usually limited to a few dozen species, but the recent
�
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Figure 1: Left, Right Top: Biologists faced with inadequate tools
for comparing large trees have fallen back on paper, tape, and high-
lighter pens. Right Bottom: TreeJuxtaposer is a scalable tool for
interactive exploration and comparison of trees.

explosion of molecular data from DNA and protein sequencing has
allowed biologists to tackle increasingly large sets of species. To-
day some groups of systematic biologists, or systematists, have re-
constructed trees of thousands of nodes, and many in the field hope
to infer a complete Tree of Life, estimated to contain over ten mil-
lion nodes, within the next ten years 1.

Although one might think that determining the Tree of Life de-
scribing all species is mostly done except for a few minor excep-
tions, the opposite is true. There is still controversy on how to
categorize well-studied groups like vertebrates and even primates,
and the situation with bacteria and viruses is even less clear. These
trees are of interest not only to evolutionary biologists, but also in
such domains as pharmaceutical drug design: determining the pos-
sible therapeutic function of an unknown plant sample may require
a large number of expensive lab tests. By deciding where the plant
fits into the tree of already-recognized evolutionary relationships,
one can perform a much more targeted set of tests.

Biologists have many tools for creating trees through automatic
reconstruction [Swofford 1998]. A single run of a reconstruction
package may generate dozens or hundreds of trees, many such runs
with different parameters could occur daily, and systematists may
grapple with a particular dataset for years. One common method
for comparing trees is to treat each tree as a point in a “treespace”
and define a metric in the treespace to determine how different two
trees are. For example, TreeSet [Amenta and Klingner 2002] is
such a tool that helps biologists winnow and compare large sets of
trees at a high level. However, a single number that summarizes
the difference between two trees is too coarse for biologists who
need to understand the structural difference between two trees. No

1http://research.amnh.org/biodiversity/center/features/tol.html
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tools for comparing trees in full structural detail exist now, but they
would be extremely helpful for biologists who must determine the
true tree amidst these many possibilities.

In this paper we will use several biological terms, which we now
define. A phylogenetic tree, also known as a phylogeny, is an en-
coding of hypothesized evolutionary relationships where the leaves
of the tree represent currently extant species or genes. An interior
tree node represents an inferred ancestral species from which all the
nodes in the subtree underneath it are descended, and these subtrees
are called clades. Ideally, phylogenetic trees are binary, because
an interior node represents the bifurcation point where one species
split into two distinct new species. However, higher degree nodes
are often seen in a phylogenetic tree when the order of bifurcation
cannot be determined because of missing data or uncertainty. Typi-
cally leaves are labelled with species names but the inferred interior
nodes often have no labels.

A consensus tree is made by combining multiple trees into a sin-
gle tree that represents the clades that are common to all the input
trees. In the case when the input trees are binary, the consensus tree
may have nonbinary interior nodes, indicating a structural differ-
ence. Although consensus trees can help systematists detect areas
of difference, characterization of the differences is not easy to ac-
complish through pure visual inspection of a single consensus tree
because structural information has been lost: the same consensus
tree describes many possible situations, and distinguishing between
these situations is important for the biologists.

A related fundamental operation underlying many biological in-
vestigations between trees is determining whether a clade is mono-
phyletic across trees. This problem can be stated as discovering
whether the nodes in a subtree (ancestor plus all descendants) in
one tree form a clade in another tree, or have become a forest.

1.1 Requirements

We have identified the following task requirements from discus-
sions with our target audience of systematists.

Automatic identification of structural differences. Humans do
not perform well at detection tasks, so we need computational sup-
port for locating the areas of difference between two trees in order
to visually mark them. We also need efficient structural difference
computation algorithms in order to extend brushing [Becker and
Cleveland 1987] to tree comparison.

Differences characterization. The biologists do not simply need
to discover whether two trees are different: they must understand
how topological structures differ in detail. For this task, biologists
often need to inspect small tree areas at the same time, if possible
in the context of the full tree.

Scalability in tree and display size. The stated goal of the Tree of
Life project is to create trees of millions of nodes within the next
several years, and we would like to support navigation and com-
parison at that scale. Many biologists still study trees of only a
few dozen nodes, and comparing even these small trees is not easy
through unsupported visual inspection alone. Several groups are al-
ready working with thousands of nodes, and their existing tools for
biological tree drawing do not adequately support trees of this size.
As a result, the systematists are often forced to fall back on scotch-
taping dozens of pieces of paper together and manually annotating
this single large tree, as in Figure 1. We would also like to take ad-
vantages of new display technologies such as the 9 megapixel IBM
T221 display. While most systematists do not yet have such dis-
plays, having more pixels with which to explore huge data sets is
an important aid to scalability, so our system should work well on
them.

We thus must design algorithms that depend on the minimum of
the total number of visible nodes (tied to the number of pixels in
the display), and the total number of nodes in the tree.

Finally we observed that systematic biologists use a wide variety
of operating systems, including Macs, Unix/Linux, and Windows.
We chose to build our system using Java and OpenGL using the
GL4Java 2 bindings. By using Java, we gain multi-platform support
in return for a minor sacrifice of efficiency.

1.2 Contributions

Our TreeJuxtaposer system is a new tool for comparing and brows-
ing large trees. TreeJuxtaposer relies on three basic techniques:

Structural comparison. The structural comparison is done by as-
sociating each node in one tree to its most “similar” node, the best
corresponding node, in the other tree. We propose a similarity mea-
sure between nodes and design efficient algorithms for computing
the similarity measure between any two nodes and for computing
the best corresponding nodes. These algorithms allow us to high-
light areas of difference automatically and support structural brush-
ing: interactive highlighting of the areas in the other trees that cor-
respond to what is under the mouse in the active tree window. Our
algorithms typically run in almost linear pre-processing time and
provide lookup in almost constant time during interactive explo-
ration.

Guaranteed visibility. We identify the concept of guaranteed vis-
ibility, the property that marked areas are always visible no matter
what navigation has been performed by the user. It would defeat
our purpose if our algorithms automatically detected all such areas
but the user missed an area because it was out of the frustum or it
subtended less than a single pixel of screen area.

AccordionTree navigation. We present a technique for tree navi-
gation that is based on global rectangular Focus+Context distortion,
and is well adapted to phylogenetic trees. Our algorithm incorpo-
rates a novel extension to the quadtree data structure and supports
efficient distortion-based navigation and guaranteed visibility of
rectilinear areas. Our technique provides good information density
both for non-binary and binary trees, as needed by biologists, un-
like several previously proposed scalable tree layout methods such
as [Lamping et al. 1995; Munzner 1998]. Our progressive render-
ing algorithm is similar to these systems, providing a guaranteed
frame rate for trees of up to 500,000 nodes on a range of display
sizes, from a laptop to a high resolution 9 megapixel display.

2 Previous Work

Most phylogeny tree viewers only handle small trees; an exception
is the TreeWiz [Rost and Bornberg-Bauer 2002] system that scales
to 75,000 nodes. It does not provide any explicit features to ease the
comparison of large trees, and navigaton is awkward because each
viewpoint change spawns a new window. In our current implemen-
tation we can compare four trees of 75,000 nodes each at interactive
frame rates. MacClade [Maddison and Maddison 1992] is perhaps
the most sophisticated of the many tools for interactive manipula-
tion of phylogenetic trees, but it is not designed for scalability.

Focus+Context is a popular information visualization approach
of showing an area of distorted aggregate context around an easily
changeable focus point to allow a large overview integrated with de-
tails in limited screen real estate [Robertson et al. 1991; Munzner
1998]. Early examples of global Focus+Context systems, where
changing the focus point affects the entire visible area, include
Document Lens [Robertson and Mackinlay 1993] and Continuous

2http://www.jausoft.com/gl4java.html
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Zoom [Bartram et al. 1995]. One of our contributions is efficient
algorithms to allow this technique to be used for visualizing large
phylogenetic trees.

Tree visualization is a highly active area of research well de-
scribed in a recent survey [Herman et al. 2000], and we limit our
discussion here to systems that focus on Focus+Context exploration
of the tree topology. The recent DOI Tree [Card and Nation 2002]
and SpaceTree [Plaisant et al. 2002] systems make heavy use of
aggregation by automatically determining when to collapse a sub-
tree and display it as a glyph. Our opposite approach is to present
as much information as possible given the pixel count of the dis-
play. Section 5.3 discusses the justification and contributions of our
choice of maximum visible detail compared to visual aggregation.

Few systems have been explicitly designed for tree comparison,
despite its importance in many domains. The TimeTube and Visual-
ization Spreadsheet of Chi et al [Chi et al. 1998; Chi and Card 1999]
share some goals with TreeJuxtaposer, but focus on showing addi-
tion and deletion of nodes via color coding on the same combined
layout of all trees of interest. Our work shows the structural differ-
ences more effectively, as their approach is similar to the consensus
tree construction discussed in Section 1. Graham presents a sys-
tem for global focus+context manipulation of multiple linked tree
views [Graham and Kennedy 2001]. However, it scales to less than
10,000 nodes and only links the perfect matches at the leaves, while
we solve the more general problem of finding best corresponding
nodes in the interior.

Brushing and linked highlighting [Becker and Cleveland 1987;
Ward and Martin 1995] are often used with smaller data sets where
the all the data points are assumed to be visible on the screen. We
are exploring how the same advantages can be delivered for large
data structure for which screen limitations might not guarantee that
all elements are visible on the screen. Although we are the first
to identify guaranteed visibility as such, the discussions of infor-
mation residue [Furnas 1997] and desert fog [Jul and Furnas 1998]
have influenced our thinking.

3 Algorithms

We next describe and discuss new algorithms for computing struc-
tural differences, drawing a global focus+context layout, and guar-
anteeing visibility.

3.1 Structural Comparison

Structural comparison algorithms underlie three central aspects of
our system: automatic structural difference marking, structural
brushing, and guaranteed visibility. We present a new method
for computing the best corresponding node between two trees in
near-linear average time during preprocessing. We also explain the
construction that allows us to quickly compute how “similar” two
nodes are by using a known rectangular range searching data struc-
ture. Such computation is necessary for the guaranteed visibility
computations described in Section 3.3.

Both algorithms depend on a definition of similarity. Our strat-
egy is to first associate each node in one tree with the most “simi-
lar” node in the other tree according to a carefully chosen similarity
measure. Then, we can visualize the structural difference between
two trees by highlighting those nodes that do not have a very good
match. Our definitions of similarity and BCNs are explicitly de-
signed to support visual highlighting that pinpoints the nonmono-
phyletic clades of interest to biologists. The association between
nodes also allows us to implement linked highlighting conveniently.

Associating leaf nodes is straightforward as each leaf node is
labeled by a name, and we can associate two leaves if they have
the same name. However, the association between internal nodes
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Figure 2: We show the calculation of best corresponding node
scores and the highlighting of structural difference based on them.
At each interior node of the large tree, we show the similarity
score between that node and every node in the other tree. We only
compute the scores in the simplified spanning tree, emphasized in
black, and use the highest one as the BCN. Structural differences
are shown by marking the nodes with BCN score �� in red.

is less clear. Our similarity definition can be regarded as an ex-
tension of previous work on consensus trees [Adams 1972; Sokal
and Rohlf 1981; Margush and McMorris 1981] and the RF met-
ric for trees [Robinson and Foulds 1981], both used extensively
in the biology community. If for each node ����� , let ������� de-
note the set of the labels of the leaves in the subtree rooted at � ,
then using the RF metric a node ��������� is mapped to a node
��� �!�"� if ����� � �$#%�������&� . Because the previous work only con-
siders perfect matching, it may cause two intuitively similar trees
to have very low similarity score. We extend this definition by
using a similarity that is used to measure the difference between
two sets — the similarity '(�*),+.-/� between two sets )0+1- is de-
fined to be 2 35476822 3597682 . One nice property of this measure is that the
function defined by :;�*)0+1-/�<#�>=?'(�*),+.-/� is a metric, meaning
that both )@#A- if and only if :;�*),+B-C�D#FE ( '(�*)0+.-C�D#G ),
and :;�*)0+.HI��JK:;�*),+B-C�ILM:;�*- +.HI� . This measure has also
been used for detecting similar documents in the Stanford SCAM
project [Shivakumar and Garcı́a-Molina 1995] and in the AltaVista
search engine [Broder et al. 1997; Broder 1998].

Using this measure we are now able to compare two internal
nodes according to the sets they represent or the sets of leaves un-
derneath them. For two nodes � � �M� � and �N���M�"� , we de-
fine the similarity '(��� � +1���&� between them as '<�*����� � �O+.�������&�1� .
For �P�Q�R��� , the best corresponding node S<TVU/�������R� � is
defined to be the node that maximizes the similarity score, i.e.
S<TVU/�����I#RWYX.Z\[]WY^�_P`�aYb�'(��cd+.��� , with the tie broken arbitrarily,
as shown in Figure 2. This extension is appealing because it re-
flects the fact that in phylogenetic trees an internal node represents
the evolutionary event leading to the creation of the species under-
neath the node. BCN is not a one-to-one mapping, and therefore
not symmetric.

In what follows, we explain how to efficiently compute the sim-
ilarity score between any two nodes and the BCN for each node,
after almost linear time preprocessing.

Similarity score query. For any pair � � ��� � +1���e���"� , we
would like to be able to quickly compute '(�����&+1� � � . In a naive
implementation, one may pre-compute all the pairwise similar-
ity scores and store them, requiring quadratic space and compu-
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Figure 3: Left: When comparing two trees, computing '(��� � +.���&�
is equivalent to computing the number of points inside a rectangle,
where each label is mapped to a point in the plane. The intersec-
tion of the leaf sets for subtrees rooted at f and g is the upper
left square (C,E,F), and is the lower right square (B) for h and i .
Right: To compute the best corresponding node of f we compute
the similarity for each node in �d� and pick the node with the great-
est value. The BCN computation can be accelerated by comput-
ing only those values at the nodes of the simplified spanning tree,
shown with red circles. For example, at node g the set of leaves be-
low g and f is (C,E,F) while the set below g or f is (A,C,D,E,F),
so '(��f!+1g"�V#kjNlnm . The root of �"� has the highest score and is the
BCN of f .

tation time. Here, we present a connection between this prob-
lem and the classical rectangular range searching problem. In pre-
processing, we first traverse the tree and compute the size of �������
for each node � in the tree. This reduces the problem of comput-
ing '(��� � +1�N�&� to computing o ����� � �;pq�������&�ro as o ����� � �;sq�����N�&�ro�#
o �$��� � �ro&Lko �������&�ron=�o ����� � �"pD�$�����&�ro . We then map each leaf to a
point in the plane by the following procedure: we assign a numbert;u ����� to each leaf node � according to its order in the post-order
traversal of the tree � u for v #F�+Ow . For a label x , suppose that
� � �y� � and �����y�"� are the nodes with the label x . We map
x to the point with coordinates � t � ��� � �O+ t �n�����&�1� . In a post-order
traversal the nodes in a subtree are in consecutive order, so an in-
tersection query reduces to computing the number of points inside
a query rectangle, as shown in Figure 3 Left. This problem is well-
known in computational geometry, and efficient solutions are avail-
able [Preparata and Shamos 1990]. We implement one algorithm
that requires z{��gI|~}nZ\g"� pre-processing time and z{��g"� space and
can answer any query in z{��|~}�Z � g"� time.

Best corresponding nodes. In previous work [Day 1985], all
the perfectly matching pairs, namely pairs of nodes with similarity
score  , can be computed in the optimal linear time. Computing
the best corresponding nodes is more difficult. Even if we use the
data structure we build for computing pairwise similarity scores, it
would require quadratic time. We can do better by realizing that the
BCN can only appear at certain nodes in the tree.

For a tree � and any subset of leaves � , we define the simpli-
fied spanning tree �/�*�\� of � to be the subtree that is formed by
first computing the spanning tree of the leaves in � and then re-
placing each path of degree-two nodes by a single edge, to com-
press long chains of nodes with only a single child. We observe
that the BCN of ���D�k��� must be a node in the simplified span-
ning tree �"���*�$��� � �1� , as shown in Figure 3 Right. By this obser-
vation, it is shown in [Zhang 2003] that we can compute the best
corresponding nodes in an incremental fashion in a total of about
z{��g �1� � � time. That algorithm is however too complicated for im-
plementation. In practice, we use the fact that the BCN of a node
� � ��� � can be computed in time z{�.o ����� � �ro�|~}�ZVg"� after linear time
pre-processing: we pre-compute a data structure to answer least
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Figure 4: Left: Sparse quadtree construction. A bottom-level
quadtree cell, shown here in light blue, is created for each node
in the tree. Higher level cells are only created if at least one child
exists, so the grey cell in the upper left corner is not created in the
quadtree. The spatial extent of a quadtree cell is determined by the
relative split value of the line dividing its parent in two: the red line
divides the top-level cell, and the blue lines divide lower levels. In
the undistorted state, these split values are all .5. Middle: In this
simple zoom, the absolute position of every cell boundary and tree
edge has changed, but only the split value of the red line differs.
Right: Node geometry. Top: Interior node. Bottom: Leaf node.

common ancestor queries efficiently [Harel and Tarjan 1984], con-
struct the simplified spanning tree � � �*�$���P�O�1� explicitly, and then
traverse �"���*�$��� � �1� to compute the BCN of � � . We then simply run
this method for each node in � � . Although in the worst case this
method would require quadratic running time, for balanced trees the
total running time is almost linear ( z{��g�|�}nZ � gd� ). Fortunately, trees
in phylogeny and many other domains tend to be fairly balanced.
Therefore, the simple method works very efficiently in practice.

3.2 Spatialization and Drawing

Phylogenetic trees are most commonly laid out using one of three
methods: rectangular, slanted, or circular. After discussions with
our target population we chose the rectangular layout as a good
compromise between compactness and readability (many biologists
find circular layouts difficult to read). The layout is done in a stan-
dard way: we first place all the leaves in a vertical column, equally
spaced as shown in Figure 4, and then recursively calculate the co-
ordinates of the interior nodes from the bottom up.

We chose a Focus+Context navigation method of expanding or
contracting rectangular areas, as if the tree had been laid out on a
stretchable rubber sheet [Sarkar et al. 1993]. The border is always
anchored to the frame, so the effects of distortion are global rather
than local: growing some areas necessarily implies shrinking oth-
ers, and vice versa. The global distortion approach allows us to
strictly guarantee visibility of marked areas, as we will discuss in
Section 3.3. We constrain the deformation so that reshaping a rect-
angle propogates along both the row and column that contains it.
Figures 4 and 5 show that modifying a node also affects the subtree
beneath it and all of its siblings at the same level in the tree. Bas-
ing everything on rectangular distortions simplifies the conceptual
model of interaction and exploits the naturally hierarchical struc-
ture of subtrees. The AccordionDrawer technique is named after
the visual effect that compressing some strips and expanding others
is reminiscent of the bellows of an accordion, but one can of course
deform in both dimensions, not just one.

Focus+Context quadtree. Drawing a geometric representa-
tion of the tree imposes a mapping between the abstract elements of
the tree and the spatial extents in which we lay out and draw their
geometric representations. Every node is uniquely associated with
the edge between it and its parent. For simplicity we consider this
node-edge pair as a single primitive, whose geometric representa-
tion is different for interior and leaf nodes, as shown in Figure 4
Right. We need a spatially recursive data structure to hierarchically
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store and access these geometric objects. A quadtree is the appro-
priate choice, but we must extend it to support our requirements of
distortion-based navigation and guaranteed visibility.

Quadtree construction is described in Figure 4. The height of
the bottom quadtree grid is the number of leaves in the tree, and its
width is the tree depth. We build a sparse grid, with a cell at the
lowest level created only when it contains a tree node. At higher
levels, a cell is only created if at least one child cell already ex-
ists. We build increasingly coarse grid levels in the quadtree, with
the top-level grid containing only a single cell. The depth of the
quadtree is z{��|~}nZ(g"� , where g is the number of leaves in the tree.

We attach a node-edge pair to the smallest quadtree cell that
completely encloses it. These attachments are permanent: geomet-
ric elements do not move from cell to cell. Navigation changes the
absolute positions of quadtree cell boundaries, but the edges they
contain keep the same relative offsets to the cell borders. Using
the analogy above, both the geometry and the quadtree cell bound-
aries are on the rubber sheet, and the boundary lines are the handles
with which to stretch or shrink the sheet. Therefore, our quadtree
structure has a fixed cell-element attachment relationship but the
geometry of cells in the quadtree are flexible as they may change
due to the user interaction. This is different than typical quadtree
use in which the geometry of quadtree is fixed but the cell-element
attachment changes.

We store the cell boundaries hierarchically, as a split position
with a value between E and  that determines the allocation of space
between a cell’s children relative to its own borders. The grid is
uniform when every split is set to E�� m , and Figure 4 shows how a
simple global deformation can be the result of changing a single
split value. In more extreme cases a child boundary might need
to move outside of the current absolute position of its parent cell
boundaries, and we must also change the parent’s own split in order
to maintain the hierarchical relationship between parent and child
cell borders. The worst case of a ripple effect of deformations all
the way up to the root quadtree cell is bounded by the depth of the
grid, and is thus z{��|~}�ZVgd� work to update cell boundaries. Lookup
of absolute position has the same complexity, with a a similar hi-
erarchical quadtree traversal from the top down. We store relative
split positions instead of absolute coordinates because it makes the
cost of each update small while it is still efficient to compute the
coordinates of each cell on the fly. For efficiency, we also cache
the coordinates so that they do not have to be recalculated within a
single frame, when no navigational changes can occur.

Progressive rendering. Just as we design for the situation
where the visible elements in the scene are a small fraction of the
total nodes in the tree, we also support realtime interaction when
the number of elements that can be drawn in a single frame is only
a small fraction of the visible elements. Our drawing algorithm
is similar in spirit to that of H3Viewer [Munzner 1998; Munzner
2000], where the scene is divided into small pieces that require
roughly constant amounts of time to render, and the work units are
ordered according to their visual importance. We have a fixed time
quota per frame to ensure rapid interactive system response. We use
the first frame’s time to draw the most important items in the back
buffer, then progressively add detail to the scene in subsequent front
buffer frames if the user is not actively moving the structure. In this
case, the quantum of work is a quadtree cell, or more specifically
the tree node-edge pairs attached to that cell. The key problem is
choosing the correct drawing order, because a poor choice will lead
to distracting flickering for small trees and a complete breakdown
of realtime interaction for big trees. The most obvious solution of
simply starting at the tree root fails dramatically with distortion-
based navigation.

One possible criterion for visual importance is to order the queue
by the current screen area of the cells. However, this ordering ig-

Figure 5: Tree comparison between two variants of a single phy-
logenetic reconstruction run, with the exact location of structural
differences (in biological terms, nonmonophyletic clades) marked
in red. The left tree is in the undistorted overview position, while
parts of the right side have been expanded. Left: A small 55-node
tree. Right: A larger 1600 node tree.

nores the topology of the tree, and users found it distracting to see
disconnected subtrees appear while the rendering progressed. Also,
when interacting with direct manipulation, the visual importance is
more dependent on proximity to the current locus of attention than
screen size alone. We thus begin with the site of the most recent
user interaction, presumably the focus of the user’s attention, and
work outwards from there in order to prioritize drawing visibly con-
nected components. We enqueue cells based on the tree topology:
after we draw an edge attached to the cell, we enqueue the quadtree
cells that contain the tree edge’s parent and children. The accom-
panying video shows the efficacy of our approach.

3.3 Guaranteed Visibility

In Section 3.1 we describe how to compute the differences between
two trees. Here we discuss the problem of ensuring that these dif-
ferences are always made visible to users. We use the term guar-
anteed visibility (GV) for the property that some mark deemed im-
portant is always visible onscreen. (See Section 4 for a discussion
of the mark types considered important in our system.) In a graph-
ics system there are three main reasons that a highlighted object
would not be seen on the screen: culling for being outside the view-
ing frustum (frustum culling), culling because its projection on the
screen is smaller than a pixel (LOD culling), or occlusion by an-
other object. While these situations are not an extreme concern
when browsing, they are major breakdowns in a system designed
for identifying differences because they force users to carry out an
exhaustive search of the entire navigable area. Humans perform
poorly in such a detection task, and moreover a search would force
the users to abandon a carefully chosen current point of view.

Culling. In the vast majority of graphics and visualization sys-
tems, the viewport is smaller than the area of interest, introducing
the possibility of frustum culling. In our approach we obviate that
problem by relying on a global Focus+Context technique, where
the full dataset is presented on the screen at all times.

Even if we guarantee that each dataset element has a projection
inside the viewport, an element could be too small to be seen, in-
troducing LOD culling. That is, it could subtend less than a single
screen pixel after applying the transformation from world to screen
space. To guarantee visibility of marked areas, before culling a
node because its projected size on the screen is too small, we must
efficiently query whether the spatial extent of the subpixel cell en-
closes any highlighted objects.
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Figure 6: We compare 7K-node nonbinary taxonomy (left) with a
6K-node binary phylogeny (right) by marking clades/subtrees. We
mark four clades, and the top two are not monophyletic: they be-
come forests on the other side.

In Section 3.1 we described the algorithm for computing the sim-
ilarity score between two nodes efficiently. That algorithm is also
useful for providing GV efficiently. In GV drawing, the decision of
highlighting a cell depends on whether the cell contains nodes that
belong to a range selected in the other tree. When we build the hier-
archy of quadtree cells at startup, we perform a post-order traversal
of the quadtree to store the minimum and maximum indices of ob-
jects attached to a cell’s descendants. We then associate the interval
between the minimum and maximum indices to each cell. This as-
sociation is conservative as a cell may contain nodes from different
parts of the tree and that are not necessarily contiguous.

In order to use the range-checking data structure, we must con-
tinue to use object indices based on a post-order traversal of the tree
topology rather than spatial extent. The range converges as we de-
scend the quadtree hierarchy, and is necessarily exact for the lowest
level cells that contain only a single node.

We do the range check only for subpixel cells when we consider
whether to halt spatial recursion. If there are no marked areas, we
simply stop. If we have already highlighted this cell because of
an attached marked object, we can likewise halt. Otherwise, we
continue the descent until we have resolved the mark location, thus
avoiding potential false positive marks from inexact ranges. The ap-
proximation means that some unnecessary work will be performed,
but we can cache the results until the marks are next changed (as
described in Section 4). The important property of our algorithm
is that no necessary work will ever be missed, and Figure 7 shows
that the overhead is acceptable.

Occlusion and labels. The only source of occlusion in our
system is text labels for interior edges, because we are using a 2D
representation. Although many phylogenetic trees have labels only
at the leaf edges, as in Figure 5, we support labels at internal edges
for full generality as shown in Figures 6 and 8. We calculate the po-
tential position of a label relative to the current position of its edge,
as shown in Figure 4 Right, and draw it only if it does not occlude
any previously drawn labels in the scene. (We use standard axis-
aligned bounding boxes for efficient collision detection [Möller and
Haines 1999].) The onscreen label density is user-controllable, by
changing the size of the buffer zone around each label that deter-
mines the size of the bounding box. The drawing order described in
Section 3.2 thus has a strong influence on which labels are visible.
To improve legibility over complex backgrounds while limiting the
occlusion in the tree interior, we use a contrasting one-pixel border
rather than a background rectangle.

4 TreeJuxtaposer

We have implemented the techniques described above in TreeJux-
taposer, a global Focus+Context system for comparing large phy-
logenetic trees. The system handles simultaneous comparison of
several trees using structural difference computations for every pos-
sible pair, and can also be used as a browser for a single tree.

Figure 5 shows a typical layout while comparing two small phy-
logenies. Each tree is drawn in its own panel using a rectilinear
layout with the root on the left. Edges are rendered as simple lines
(linewidth is controllable with slider on the tool panel) and nodes
are indicated by a small square.

Our color scheme is designed to scale well even to very large
trees. Our design results in large areas of densely packed edges,
particularly at the leaf level. We wish to avoid total visual unifor-
mity in those areas which would lead to a featureless expanse when
not highlighted and excessive visual impact when highlighted. We
thus modulate brightness and saturation of the tree edges.

Unmarked edges are rendered in lighter shade of grey as they
are further away from the root. The resulting brightness gradations
provide a redundant coding of topological information. Densely
packed areas provide contextual landmark features aiding user ori-
entation, and in expanded focus areas brightness is an additional
clue about the current topological depth of the area under consider-
ation. In highlighted areas we modulate the saturation of each node
depending on the current visual extent of its subtree, so that densely
packed areas are desaturated to conterbalance the visual impact of
their aggregation.

4.1 Visual query mechanisms

To help the analysis of the differences between trees, nodes can be
colored in four different ways. The most basic mechanism is linked
mouseover highlighting: the node underneath the mouse cursor and
the best corresponding nodes in all other trees are temporarily re-
drawn in in gold. Their labels are also unconditionally drawn with
a gold background, so mouseover causes temporary popup for the
vast majority of labels that have been suppressed to achieve the
target visual density. Because manipulation of subtrees is both bi-
ologically important and central to our navigation scheme, we also
indicate the extent of the subtree underneath that highlighted node
in the active window with an unobtrusive frame. These changes are
made with a combination of xor drawing and pixel readback in the
front buffer, for immediate response without incurring the costs of
a full scene redraw. The second highlighting mechanism operates
through a standard search interface to let users rapidly find a node
with a known name by selecting it from an alphabetized list. It is
then marked in magenta and can be expanded on demand.

The third way to color trees is to highlight structural differences
by marking nodes for which '(����+.-,� HC�����1�,¡#% in red. Our sim-
ilarity definition was chosen so that the nodes marked in red pin-
point the nonmonophyletic clades. An unmarked node, a node with
a BCN score of  , does not imply the subtree beneath it has an
isomorphic counterpart in the other tree. If we marked every node
with non-identical structures underneath, the marks would be so
numerous as to be useless. Rather, if all the nodes in a subtree are
unmarked, then there does exist a structurally identical counterpart.
Our design target is trees that are mostly similar, with scattered ar-
eas of difference. However, difference highlighting can be toggled
off in cases where the trees are so dissimilar that the tree would be
overwhelmingly red.

Finally, the entire subtree beneath a node can be highlighted in
a user-chosen color, and the BCN of each node in the subtree is
also highlighted in the other tree. That is, if the subtree �"¢B£¥¤ is
highlighted, then all the nodes in s8¦ `�a¨§¥©¥ª -CH«�!����� are highlighted
in the other tree. Highlighting the subtree beneath a red edge will
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result in highlighted nodes in the other tree that form a forest rather
than a contiguous subtree. Figure 5 Left shows a nonmonophyletic
clade: the subtree underneath the bottom red edge of the right-hand
tree is blue, and on the left side the blue areas form a forest. Figure
6 shows four marked clades on the left-hand tree, and the top two
monophyletic clades are scattered throughout the right-hand tree.

We do not maintain an explicit list of all highlighted nodes, be-
cause traversing that list would be linear in the total node count
when large parts of the tree are marked. We delay the decision of
what color to use for a node until render time, so that we only pay
the cost of checking for the visible nodes. As described in Sec-
tion 3.1, each subtree is associated with a range bounded by two
integers, and it takes z{��|~}�Z � g"� time to check whether two sub-
trees have leaves in common, or equivalently, to find whether a sub-
tree should be highlighted. We cache these colors until the user’s
next change in marking subtrees or toggling the structural differ-
ence mark display. We thus maintain the interactivity of the system
even when very large subtrees are selected.

4.2 Navigation

We navigate in TreeJuxtaposer with rubber-sheet style expansions
and contractions of rectangular areas. The main navigation mode
uses the tree topology as a starting point: the rectangular boundary
of any subtree (by default, the one under the mouse) can be adjusted
either by directly dragging the boundary rectangle corner to a new
place or by animated transitions in fixed increments. During com-
parison users often want analagous areas in each tree to be the focus
and find it cumbersome to navigate separately in each window. We
provide the option of linked navigation, where the subtrees beneath
the best corresponding nodes in other windows are resized in lock-
step with that of the active window. Entire forests can be grown
or shrunk with linked fixed-interval transitions. Unlinked naviga-
tion in a single tree is possible by first dragging out an arbitrary
screen-space rectangle, then deforming it to the desired size.

5 Results and Discussion

5.1 Performance

TreeJuxtaposer is a highly scalable system, even compared to pre-
vious work that address the simpler problem of browsing: we can
interact in real time with a single tree of 550,000 nodes. When
comparing two trees, the system can handle a sum of up to 277,000
nodes, as shown in Figure 8. Both benchmarks were run on a 2.4
GHz Pentium III machine with 2GB of RAM, using java 1.4 with an
heap of 1100 MB and an nVidia Quadro4 700XGL graphics card. It
runs well on a large variety of displays from a simple laptop to the
latest high resolution 3800x2400 pixel IBM T221 flatpanel (driven
by an nVidia Quadro4 900XGL). We do not show that range in
the figures because printing a full-resolution screenshot would re-
quire more area than a standard page, see instead the accompanying
video.

In Figure 7 we show the overhead of our major design choices by
graphing the time required to render an entire scene as the number
of tree nodes increases. We see that the computation cost is linear
in the number of nodes up to a threshold, after which the cost stops
increasing. We have thus achieved our goal of bounding our compu-
tation costs by the display size rather than the total number of nodes
when the tree is large. Our techniques of progressive rendering and
guaranteed visibility do incur overhead compared to our baseline of
LOD culling (which is itself always better than the naive approach).
We succeed at mitigating the cost of GV with caching. Although
progressive rendering is expensive, prioritizing the elements by vi-
sual importance is a major contribution to the effectiveness of the
interactive experience when using TreeJuxtaposer.
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Figure 7: Statistics showing the overhead of our design choices,
with the benchmark of complete binary trees ranging from w�¬ leaves
to w � ¬ leaves. The red line is the naive case, where we render
all edges starting from the root. The yellow baseline shows LOD
culling. The cyan line has LOD culling and progressive render-
ing. The green line shows LOD culling, progressive rendering, and
guaranteed visibility support. The black line, which represents the
normal state of TreeJuxtaposer, has the previous features but caches
the GV computations for added efficiency. These performance fig-
ures are for a 2.2GHz Pentium Xeon with 2GB of RAM, using java
1.4 with a heap of 1500 MB and an nVidia Ti4600 graphics card.

Our progressive rendering algorithm maintains a constant frame
rate on displays of up to nine megapixels using only a single graph-
ics card. Nevertheless, we see the inevitable limit of this approach
even if we had an optimal ordering for drawing: as display size
grows, the amount of time to completely render a scene also grows
and the proportion of the scene that we can draw in a single frame
decreases. This problem is not specific to our application or con-
figuration. For example, a similar problem was reported [Guim-
bretière 2001] while using brainstorming tools on the Stanford In-
teractive Mural, a 9 megapixel digital whiteboard driven by a 32-
node rendering cluster.

We will continue to work towards the motivating example of han-
dling the entire Tree of Life. Thus far we have focused somewhat
more on time efficiency than space efficiency, so our current bot-
tleneck is memory footprint rather than computation. We believe
that making several obvious refinements will lead to major memory
efficiency improvements.

5.2 Structural Comparison

Our algorithms free the user from the painstaking task of manually
identifying patterns, or worse yet manually confirming that a given
pattern does not exist in the dataset. The applicability of our method
of computing best corresponding nodes has been confirmed by ev-
ery biologist to whom we have shown the system, which is heart-
ening given the plethora of different metrics for whole-tree com-
parison that are currently in use [Robinson and Foulds 1981; Sokal
and Rohlf 1981]. We have found that the comparison features of
this tool are appreciated even by the many biologists who still work
with relatively small datasets.

As for efficiency, the query cost is negligible, and our prepro-
cessing algorithms are very efficient in practice. For example, BCN
computation takes only 7 seconds at startup time to compare a tree
of 137,000 nodes with one of 140,000 nodes, and the range tree
construction takes 29 seconds. Both benchmarks are on the Xeon
PC mentioned above using the datasets shown in Figure 8.
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5.3 Focus+Context

Previous Focus+Context literature focuses mostly on browsing.
While SpaceTree [Plaisant et al. 2002] and H3 [Munzner 1998;
Munzner 2000] are able to display large trees, these systems are
ill-suited for the task of comparison because they cannot guaran-
tee that marked areas will be visible on the screen. SpaceTree uses
unconstrained 2D navigation which means that many nodes can be
outside the frustum, while H3 culls away subtrees whose projected
areas will be less than one pixel on the screen. (Moreover, the H3
layout results in very poor information density with the common
phylogenetic case of binary trees.)

Our prevention of frustum and subpixel culling comes at a cost.
Global Focus+Context navigation techniques could be confusing to
novice users because highly compressed areas are sometime diffi-
cult to identify. Guaranteeing visibility of subpixel selected areas
incurs the computational expense of a range check before halting
the quadtree traversal. Nevertheless, we see from Figure 7 that
caching the information leads to acceptable performance.

Visual aggregation versus glyphs. In TreeJuxtaposer we draw as
much detail as possible, down to the level of one pixel. This maxi-
mum visible detail approach is diametrically opposed to displaying
aggregate information in a glyph, as exemplified by DOITree [Card
and Nation 2002] and SpaceTree [Plaisant et al. 2002], where visual
encoding techniques deliver abstract semantic information about a
structure and hide the details. Because we use true geometry rather
than a monolithic glyph, we can use the very lightweight query
mechanism of mouseover highlighting to quickly get structural and
label information at the pixel level. Similarly, our guaranteed visi-
bility framework goes beyond simply indicating the existence of a
marked area - the exact position of the mark imparts information
about the location of that marked area within the subtree. Although
we have designed the navigation system for maximum fluidity, we
also recognize that having high information density of any given
static view is useful in minimizing the total amount of navigation
that must be undertaken by the user.

In most glyph-based systems, expansions are explicitly triggered
by user selection of a point of interest, and sometimes contractions
must also be explicitly requested. In our approach, user navigation
implicitly controls expansions and contractions of subtrees, a fea-
ture that supports faster assimilation of unfamiliar dataset structure.

We have taken a particularly extreme approach in this maximum-
detail direction to explore its potential, because the preponderance
of previous work has investigated the benefits of aggregation. Fu-
ture systems may well benefit from hybrid approaches that merge
the benefits of both visual simplicity and the power of detail.

5.4 Guaranteed Visibility

The concept of guaranteed visibility has proven to be very powerful
because it relieves our users from the job of exhaustive exploration,
by providing direction on areas of interest as navigation targets. It is
of course not limited to this specific application and can be applied
to other information visualization system as well. For example,
visible landmarks are critical for wayfinding in the physical world
[Lynch 1960], and we conjecture that GV will help users maintain
their orientation when navigating through large information spaces.

Occlusions. While occlusion is a familiar problem in 3D systems
(for example, the influential Cone Tree [Robertson et al. 1991]),
it can also be present in 2D approaches because objects can mask
each others such as in the DOI Tree [Card and Nation 2002] or sim-
ple items like labels can hide highlighted areas. In our system only
labels can create occlusions. While we alleviate this problem by
using a contrasting border rather than the usual opaque background
rectangle for the label, marks can still sometimes be hidden. Users
must occasionally turn off label drawing briefly in order to locate

areas of interest. Although this solution is not ideal, it does not oc-
cur often in practice, especially because most phylogenetic trees do
not have interior node labels. Furthermore, mouseover highlighting
where labels appear briefly as popups does allow users to stay ori-
ented even in the interior if they have chosen a sparse label density.
While we considered translucent labels, they would be very diffi-
cult to read, and the progressive rendering algorithm described in
Section 3.2 would have to be much more complex to also support
back-to-front drawing semantics.

Guaranteed frame rate. Our work uncovers an interesting inter-
action between guaranteed visibility and guaranteed frame rate al-
gorithms. With a generic guaranteed frame rate algorithm, some
objects may be culled because the system is running out of time to
draw them. Even in a GV system with progressive rendering, navi-
gating toward a selected mark can be difficult because the marks are
not guaranteed to be in the first frame, only in the finished scene,
so the mark could disappear from view during interaction. In the
worst case, the entire scene could be marked so there is no way
to guarantee that all marked areas are drawn within the first frame.
We could address the situation where the number of marked areas is
small and they could have been visible had they been ordered early
in the drawing queue. Although our design decision to evaluate on
the fly whether an element is marked makes it expensive to keep
track of marked areas explicitly, it could be interesting to integrate
marking status with our current drawing order criteria.

Our current approach to guaranteed frame rate is purely geomet-
ric. It might be fruitful to exploit inter-frame coherency through
texture, as done in the Talisman system [Torborg and Kajiya 1996].
We could start by saving the result of the previous scene as a tex-
ture, map it to reflect the changes in expansions and contractions,
and then fill in only the areas of major change geometrically.

Visibility versus detectability. In this paper we have focused on
the notion of visibility: the fact that an object could be seen on the
screen. However, something visible can still be difficult to detect:
an object made from 1x4 red pixels is technically visible, but could
be difficult to detect on a 200 dpi display. The relationship between
the two notions is in general non-trivial: factors such as saturation,
hue, brightness, and visual extent enter into play. For example, sim-
ply increasing the visual extent of highlighted areas would lead to
undesirable occlusion, and using other visual encoding techniques
such as a moving outline could prove distracting.

Indirect guaranteed visibility. Our definition of guaranteed vis-
ibility is strict, mandating that all marked objects are always di-
rectly visible on the screen. If instead some navigation is accept-
able, the underlying goal of ensuring that highlighted objects are
not missed can be approximated through other mechanisms. For
instance, graphical diff tools have a marked scrollbar that can
be considered an always-visible index, even though the main view
is only partial. Another approach would be automated navigation,
where a series of viewpoint changes shows all interesting places
briefly, in the style of Asimov’s Grand Tour [Asimov 1985]. Strict
GV has enough constraints that it cannot be integrated into many
previous systems, but indirect GV adds enough flexibility that it
could be added to glyph-based systems such as DOI Trees [Card
and Nation 2002]. The multiscale navigation analysis of Jul and
Furnas discusses the need for visible “residue”, which is a form of
indirect GV.

5.5 Other application domains

Our current system is a standalone application targeted to the area
of phylogeny. We would like to integrate our system with exist-
ing phylogeny manipulation tools like Mesquite3 at the API level,

3http://www.mesquiteproject.org
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so that the results of more sophisticated biological queries can be
graphically explored in large trees.

While phylogenetic tree comparison was our primary intended
task, we believe that our system will be useful in numerous other
domains. Although the nomenclature of monophyletic clades is un-
familiar outside of phylogenetics, our definition of similarity leads
to a visual indication of the exact areas of structural divergence be-
tween trees that is broadly applicable. In biology alone there are
many other problems requiring tree comparison, including compar-
ing the dendrograms resulting from alternate hierarchical cluster-
ings of microarray data [Seo and Shneiderman 2002]. Formal meth-
ods for verifying computer hardware and software generate huge
proof trees where comparison could guide the developers in refin-
ing their solver algorithms [Neufeld et al. 1997]. Web designers are
often interested in comparing the hyperlink structure of their sites
before and after major site reorganizations [Chi and Card 1999].
Figure 8 shows a networking example of two spanning trees of the
Internet backbone router topology. This is the same dataset used
in a widely distributed series of four posters 4, one per year, but
it was essentially impossible to use them to compare the network
structure from year to year through visual inspection. It had never
been explored in an interactive system due to its sheer size before
we loaded it into TreeJuxtaposer.

6 Future work

Our current definition of similarity does not take edge weights into
account. Many biologists use trees with weighted edges, where
the weights represent either elapsed time or levels of uncertainty.
We would like to develop a structural comparison algorithm that
deals properly with edge weights. Defining an appropriate simi-
larity measure is a challenging problem, and even some obvious
extensions are difficult to compute efficiently.

We would also like to explore further the concept of guaranteed
visibility. Our work already identifies some important aspects of
this concept but much more needs to be done. For example, while
we guarantee that marked areas will be shown to the user, our marks
are relatively coarse-grained: our structural difference marks do
not distinguish between a contiguous subtree and a separated for-
est. We intend to extend the notion of guaranteed visibility so that
marks can reflect more information about the hidden information
they represent.

7 Conclusion

We have presented a system that allows interaction with and de-
tailed structural comparisons between trees of over 100,000 nodes
each, and browsing single trees of half a million nodes. Our ap-
proach to visual structural comparison and algorithms for efficient
structural difference computation fill a needed gap. Our new global
Focus+Context navigation algorithm allows scalable exploration
and comparison. We have introduced the concept of guaranteed vis-
ibility, and found it to be a useful property in expanding the reach
of our systems.
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