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Graph layout algorithms typically conform to one or more aesthetic criteria (e.g. mini-
mizing the number of bends, maximizing orthogonality). Determining the extent to
which a graph drawing conforms to an aesthetic criterion tends to be done informally,
and varies between di¡erent algorithms.This paper presents formal metrics for mea-
suring the aesthetic presence in a graph drawing for seven common aesthetic criteria,
applicable to anygraph drawing of any size.The metrics are useful for determining the
aesthetic quality of a given graph drawing, or for de¢ning a cost function for genetic
algorithms or simulated annealing programs.The metrics are continuous, so that aes-
thetic quality is not stated as a binary conformance decision (i.e. the drawing either
conforms to the aesthetic or not), but can be stated as the extent of aesthetic confor-
mance using a number between 0 and1.The paper presents the seven metric formulae.
The application of these metrics is demonstrated through the aesthetic analysis of
example graph drawings produced by common layout algorithms.
r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

AUTOMATICGRAPH layout algorithms take as input an abstract graph structure comprising
relational information about objects and the associations between them, and produce a
visual representation of the graph, where objects are typically represented as circles on a
two-dimensional plane, and the associations represented as lines between the circles.
Many such algorithms have been produced [1], all of which typically take into account
one ormore aesthetic criteria, with the assumption that bydoing so, the readabilityof the
drawing is increased. Such aesthetic criteria include, for example, minimizing the num-
ber of edge crossings, maximizing the depiction of symmetry, andmaximizing the mini-
mum angle between adjacent edges leaving a node.

This paper presents a set of formal, objective metrics (scaled to lie between 0 and 1),
which measure the extent towhich a graph drawing conforms to each of seven common
aesthetic criteria. Currently, the measurement of these aesthetic criteria within a graph
drawing is done informally, and may di¡er between di¡erent algorithms. There is no
standard, objective way for analysing a graph drawing with respect to the presence of
di¡erent aesthetics. Continuous measures are necessary, so that analysing a drawing with
respect to an aesthetic is not merely a binary decision (that is, a drawing is considered
1045-926X/02/$-see front matter r 2002 Elsevier Science Ltd. All rights reserved.
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‘orthogonal’ or ‘not orthogonal’), but is rather an indication of the extent to which the
drawing conforms to the aesthetic (that is, a drawing may be considered to have 65%
presence of orthogonality).

Aside from providing a formal method for analysing the aesthetic quality of graph
drawings, these computational aesthetic metrics can be used for the de¢nition of cost
functions for genetic algorithms and simulated annealing programs.That is, an ideal aes-
thetic quality can be de¢ned in advance (for example, the drawing should have at least
70% symmetry, at most 5% ‘crossiness’, and 0% ‘bendiness’). An evaluation function,
which determines whether these criteria are satis¢ed, may then be implemented using
computational metrics for each of these aesthetics, and used to indicate whether further
iterations are required.

Many algorithms attempt to conform to the extreme of the aesthetics (i.e. removing all
bends, or ensuring that all nodes are placed on an invisible grid).While it is generally
assumed within the graph drawing community that these aesthetics improve the read-
ability of graph drawings (although these assumptions have recently been investigated
[2]), it maybe the case that the usefulness of an aesthetic is related to a critical mass rather
than an extreme: perhaps drawings with at most 10% ‘crossiness’ are as useful as those
with 0% ‘crossiness’ or perhaps a drawing needs to be at least 90% orthogonal before
the usability e¡ects of the orthogonality aesthetic are evident.Without continuous mea-
sures, this notion of critical mass, and the computational implication of relaxing the re-
quirement that the aesthetic be satis¢ed at the extreme cannot be investigated.

The metrics are intended to be applicable in the analysis of drawings of any graph of
any structure or size, enabling quantitative comparisons between drawings of di¡erent
graphs, and to ensure that they can be used universally in generic cost functions in itera-
tive algorithms.While Bridgeman andTamassia [3] de¢ne some metrics associated with
graph drawings, their concern iswith the measurement of di¡erences between two draw-
ings of the same graph in a dynamic environment.

Metrics for seven aesthetics are proposed here. All the aesthetics are de¢ned such that
the measurement is a real number in [0,1], where 1 indicates the positive aspect of the
aesthetic (i.e. the amount of the aesthetic for which it is assumed the drawing is easiest
to read: for example, a low number of bends, or a high amount of symmetry). Scaling the
metrics in this way ensures that the metric value does not depend on the nature of the
underlying graph.The seven aesthetics for which metrics have been de¢ned are:

* minimizing edge crossings,
* minimizing edge bends,
* maximizing symmetry,
* maximizing the minimum angle between edges leaving a node,
* maximizing edge orthogonality,
* maximizing node orthogonality,
* maximizing consistent £ow direction (directed graphs only).

With the exception of symmetry (for which an objective metric de¢nition is trivial and
not very useful, see Section 5, below), all the metrics have been de¢ned objectively, and
are not intended to take human value judgements based on perception of what appears
‘good’ into account. Such value judgements could only be considered valid if they were
the results of an empirical study (that is, taking only the personal opinion of the author
into account would be inappropriate: more extensive user studies would be required).
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Experimental research to determine whether these objective measurements correspond
to human perception is left for a later study.

This paper begins with terminology and de¢nitions, before describing the de¢nition
of each of the seven metrics in detail. Example drawings and their calculated aesthetic
values are then presented to demonstrate the application of these metrics.

2. De¢nitions

A graph G has n nodes and m edges, with the ith node denoted ui; and its degree as
degreeðuiÞ: G can be rendered as a graph drawing DðGÞ on a two-dimensional plane by
associating a co-ordinate pair ðxi, yiÞ with each node ui:

For the purposes of this paper, it is assumed thatG is connected, that it contains at least
one edge, and that there is at most one edge between any two nodes. It is also assumed
that no two vertices inDðGÞ share the same co-ordinates.

Some of the metrics presented here (e.g. crosses, orthogonality), require that an aux-
illiarygraph drawingbe de¢ned ðD0ðGÞÞ:ThegraphdrawingDðGÞ, withpolyline edges,
is used to derive D0ðGÞ with straight-line edges. This derivation (called bends promotion)
consists of promoting thebends in the edges ofDðGÞ into nodes inD0ðGÞ, and replacing
edge segments of the bent edges in DðGÞ with new straight-line edges in
D0ðGÞ (see Figure 1). The properties of D0ðGÞ are written primed, as n0, m0, etc.When
DðGÞ is a straight-line drawing, thenDðGÞ andD0ðGÞ are identical.

3. Crossings @c

The edge crossings aesthetic metric (@c) for DðGÞ is based on c, the number of edge
crossings in D0ðGÞ, where an edge crossing is de¢ned as a point on the plane where
two edges intersect.

When calculating c, only pairwise edge intersections are considered. In the case where
kZ2 edges cross at a single point, it is treated as though 1

2kðk� 1Þ individual pairwise
crossings have occurred (see Figure 2).

To produce a metric value between 0 and 1, the number of edge crosses needs to be
scaled against an upper bound of the number of possible crosses. Much work has been
Figure 1. Example of bends promotion: the white nodes ofD0ðGÞ are of the ‘bends promoted’ type



Figure 2. In both drawings, k ¼ 6 edges are involved in intersections. Drawing (a) has c ¼ 6 crossings,
and drawing (b) has c ¼ 1

2ð4Þð4� 1Þ ¼ 6 crossings
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done on de¢ning the lower bound on the number of possible crosses in a graph drawing
(e.g. [4]).WhileJensen [5] de¢nes a formula for the upper bound, he considers only fully
connected graphs, and Shahrokhi [6] de¢nes upper bounds in terms of an unspeci¢ed
constant (assumed to be dependent on the structure of the graph).

For the purposes of the de¢nition of a metric that can be universally applied to graphs
of any structure, we de¢ne a reasonable approximation for the upper bound of the
number of edge crossings.

First bends promotion is performed on DðGÞ to form a straight-line graph drawing
D0ðGÞ:We then calculate the number of edge crossings if every edge were to cross every
other edge (i.e. the total number of edge pairs).This is an overestimate from which we
then subtract the total number of edge crossings that are known to be impossible in a
straight-line graph drawing.

The ¢rst component of the formula is therefore

call ¼
Xm0

i¼1

ði � 1Þ ¼ m0ðm0 � 1Þ
2

arrived at by considering that every edge is crossed by every other edge.
In straight-line drawings of connected graphs with at most one edge between nodes,

adjacent edges cannot cross.The total number of such impossible crossings is therefore

cimpossible ¼
1
2

Xn0
j¼1

degreeðujÞðdegreeðujÞ � 1Þ

where vi and wi are the end nodes of the ith edge.
The approximation for the upperbound on the number of edge crosses in a drawingof

any graph is therefore

cmx ¼ call � cimpossible

¼ m0ðm0 � 1Þ
2

� 1
2

Xn0
j¼1

degreeðujÞðdegreeðujÞ � 1Þ

The actual number of crosses in the drawing is therefore scaled against the maximum
possible number of crossings, to give a number between 0 and 1. So that 1 represents
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maximum ‘crosslessness’ (i.e. assumed to be easier to read), the scaled measurement of
crosses is subtracted from1.The edge crossing aesthetic metric is therefore de¢ned by

@c ¼ 1�
c

cmx
if cmx > 0

0 otherwise

8<
:

The metric is limited to the range 0r@cr1:Note that the internal structure of many
straight-line graphs does not allow for every edge to cross all other edges, and therefore
the approximation of the upper bound is likely to be an overestimate. In particular, this
upper bound of edge crossings is impossible for drawings of any graph that contains a
cycle, and in this case,@c can never equal 0.Using an approximation of the upper bound is
necessary, however, if the metric is to be universally applicable to graphs of any structure.

4. Bends @b

The aesthetic metric for bends (@b) forDðGÞ is based on b; the number of bent edges in
the drawing; that is, internal points of an edge whose co-ordinates do not lie on the
straight line between the two end nodes of the edge.The number of bends can be calcu-
lated directly as a result of bends promotion:

b ¼ n0 � n

¼ m0 � m

We cannot scale against an upper bound of the number of bends (as this is in¢nite), so
we scale by the total number of edge segments:

bavg ¼
m0 � m

m0

where 0rbavgo1: When DðGÞ has many bends, m0
bm and bavgE1: Similarly, when

DðGÞ contains no bends, m0 ¼ m and bavg ¼ 0:
So that 1 represents maximum ‘bendlessness’ (i.e. assumed to be easier to read), this

scaledmeasurement of bends is subtracted from1.The bends aesthetic metric is therefore
de¢ned by

@b ¼ 1� bavg

Note that @b ¼ 0 is impossible, as it implies the existence of an in¢nite number
of bends.

5. Symmetry @s

From a strictly geometric point of view, axial symmetry in a graph drawing may be de-
termined simply by considering a single axis and the mirrored congruence of the nodes
and edges on either side.This would produce a binary indication of whether the drawing
is symmetric or not.
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However, an approach that insists on exact geometric symmetry, and returns merely a
binary value, is limited in its use.The computational aesthetic metric (@s) is more inclu-
sive, as its de¢nition takes into account some assumptions about the humanperception of
symmetry, and returns a numeric value (scaled between 0 and 1) to indicate the extent to
which the drawing can be considered symmetric.This metric considers only re£ective
symmetry, ignoring rotational symmetry.

The steps of the algorithm are as follows:

* for each pair of nodes, generate a potential axis;
* for each axis, determinewhether there are su⁄cient re£ected nodes around the axis for

a symmetric subgraph to be identi¢ed;
* for each symmetric subgraph, calculate a symmetric value depending on whether the

re£ected nodes are of the same type or not; weight this symmetric value by multiply-
ing it by the area of the symmetric subgraph;

* add theweighted symmetry values of all the symmetric subgraphs, and scale this value
bydividingby the total area of the graph drawing (or the total area of all the subgraphs,
whichever is the maximum), to give a value for symmetry that lies between 0 and 1.

This metric is very computationally expensive, with a worst case of Oðn7Þ and a best
case of Oðn5Þ: The pseudo-code algorithm to determine the symmetry value of a graph
drawing is presented in Figures 3 and 4.
Symmetry_Aesthetic  ( )(GD , THRESHOLD , TOLERANCE , FRACTION )

1. Generate )(' GD  from )(GD  using bends promotion (see Figure 1)

2. Generate )('' GD  from )(' GD  using crosses promotion (see Figure 7)

3. Set SYMTOTAL_  to 0

4. Set AREATOTAL_  to 0

5. Generate the set of all possible axes in )('' GD  (the set of the perpendicular bisectors 
of all possible node pairs)

6. For each axis, A
(a) Determine whether there is a symmetric subgraph around A . For a symmetric 

subgraph to exist around A , there should be at least THRESHOLD  edges which 
are mirrored around A  (where the end nodes of the edges are mirrored within 
TOLERANCE  pixels)

(b) If such a subgraph exists for A
(i) calculate the symmetry value of the subgraph, called SYMSUB_  [see 

function Subgraph_Symmetry(Figure 4)].

(ii) calculate the convex hull area of the subgraph, called AREASUB_ .

(iii) add AREASUB_  to AREATOTAL_

(iv) add AREASUBSYMSUB __ ×  to SYMTOTAL_

7. Calculate the convex hull area of )('' GD , called AREAWHOLE _

8. Divide SYMTOTAL _  by the maximum of AREAWHOLE _  and AREATOTAL_ , 
and return this value as the scaled symmetry aesthetic value for )(GD .

Figure 3. Psuedo-code for the algorithm to measure the symmetry metric of a graph drawing. Four
parameters are required: the graph drawing ðDðGÞÞ, the minimum number of mirrored edges required
for identi¢cation of a symmetric subgraph (THRESHOLD), the pixel range within which two nodes
are deemed to be symmetric around an axis (TOLERANCE), and the proportional weight given to sym-

metric nodes which are not of the same type (FRACTION)



Figure 5. Example of a drawing with obvious local symmetries, but no global symmetry

Subgraph_Symmetry ( SUBGRAPH , FRACTION )

(The subgraph is defined by a set of edges that are mirrored around an axis. The end nodes of 

these edges may be of three types: real, bends-promoted and crosses-promoted. FRACTION
is a weighting parameter within the range 0 − 1.)

1. Set TOTAL to 0

2. For each pair of mirrored edges in SUBGRAPH  (see Figure 8)
(a) for the first pair of mirrored end nodes, if they are of the same type, set 1=P ; if 

they are of different types, set FRACTIONP =

(b) for the second pair of mirrored end nodes, if they are of the same type, set 1=Q ; 

if they are of different types, set FRACTIONQ =

(c) Add QP ×  to TOTAL

3. Calculate the average symmetric value per edge pair by dividing TOTAL  by the 
number of edge pairs in SUBGRAPH , and return this value as the symmetric value for 

SUBGRAPH .

Figure 4. Pseudo-code for the Subgraph Symmetry function
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5.1. Assumptions Relating to the Perception of Symmetry

The metric de¢nition takes into account the following assumptions about the percep-
tion of symmetry in a graph drawing,which are based on informal tests and observations:

1. Both local and global symmetries can be observed in a graph drawing. For example, a
drawingmaybe considered to be highly symmetric if it has two non-overlapping sym-
metric components but no global symmetry (see Figure 5).This assumption is taken
into account in the algorithm by identifying all the component symmetric subgraphs
of the graph drawing.

2. The amount that a symmetric component contributes to the overall symmetry of the
drawing is related to its area.This assumption is taken into account in the algorithmby
weighting the symmetry value of each identi¢ed symmetric subgraph by its convex
hull area.

3. It is hard to identify symmetric components as separate objects when their areas over-
lap.The edge crossings interfere with the perception of symmetry (see Figure 6).This
assumption is taken into account in the algorithm by considering crosses as playing as
important a role in the identi¢cation of symmetric subgraphs as nodes do.The algo-
rithm performs crosses promotion on the bends-promoted graph drawing D0ðGÞ to gen-
erate D00ðGÞ: This introduces ‘promoted nodes’ at edge crossings (similar to those
produced by bends promotion) and the two crossing edges in D0ðGÞ are converted
into four new replacement edges (see Figure 7). This crosses-promotion results in



Figure 6. Example of non-obvious geometric symmetry in sub graph drawings due to overlap.The graph
drawing in (a) is composed of the highly symmetric sub graph drawings shown in (b): the dashed lines
indicate identical nodes, separated for clarity. Despite the overlapping symmetry, (a) does not have percep-
tually obvious symmetry. Hence, it is considered inappropriate to identify local symmetries without

considering the e¡ect of edge crossings
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overlapping symmetric components not always being considered as symmetric, as the
cro-ssesthattheyinclude introduceadditionalconstraintsonthedetectionofsymmetry.

4. Both crosses and bends determine the observed shape of symmetric components in
the sameway that nodes do.This assumption is taken into account in the algorithmby
using all three types of nodes (real, bends and crosses) in the same waywhen identify-
ing symmetric subgraphs.The nature of the end-nodes of symmetric edges in the sub-
graph of the bends- and crosses-promoted drawing is taken into account when
computing the symmetric values: if the mirrored nodes are of the same type, their
weighting is1; if not, their weighting is a value between 0 and1 (called FRACTION)a.
Figure 8 illustrates how the algorithm treats the symmetry of edges with nodes of
di¡erent types.

5. Perception of symmetry does not require exact geometrical correspondence between
mirrored nodes. This assumption is taken into account in the algorithm by using a
degree of tolerance (called TOLERANCE; measured in pixels) when comparing
node co-ordinates around an axis. If the magnitude of the vector between a node
and itsmirrored counterpart is less than the tolerance value, the two nodes are deemed
to be symmetric around the axisb.

6. Trivial symmetries are ignored; for example, when shown a simple line, the property
of symmetry will tend to be overlooked.This assumption is taken into account in the
algorithm by setting a minimum threshold on the number of symmetric edges in a
subgraph drawing for it to be considered symmetric, called THRESHOLDc.
a The examples in Section 9 use a value of 1
2 for FRACTION.

b The examples in Section 9 use a value of 3 pixels forTOLERANCE.
c The examples in Section 9 use a value of 2 forTHRESHOLD.



Figure 8. Example of calculating the edge-pair weighting ðP� QÞ for three kinds of node-type combi-
nations in the Subgraph Symmetry function in the algorithm described in Figure 4.The three types of
nodes are ‘real’nodes,‘bends-promoted’nodes, and ‘crosses-promoted’nodes. In this diagram, the shading
of the nodes indicateswhether they are of the same type.FRACTION is a parameter value between1and 0
(abbreviated toFR for clarity). Edges e and f are symmetric about axisA: In (a) all nodes agreewith the type
of their re£ected counterpart, leading to P ¼ Q ¼ 1 and P� Q ¼ 1: In (b) one of the node pairs is type-
asymmetric leading to P� Q ¼ FR:When both pairs are type-asymmetric, as in (c), the contribution of

the edge pair ðe; f Þ is P� Q ¼ FR2

Crosses promotion

D'(G) D''(G)

Figure 7. Example of crosses promotion: the shaded node ofD00ðGÞ is of the ‘cross promoted’ type
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The metric is scaled to lie within the range 0r@sr1, through division by the max-
imumof the sumof the area of all the component symmetric subgraphs, and the total area
of the drawing.

6. Minimum Angle @m

The minimum angle aesthetic metric (@m) forDðGÞ is based on d , the average deviation
of adjacent incident edge angles from the ideal minimum angled:

d ¼ 1
n

Xn

i¼1

Wi � yi min
Wi

����
����
d Note that this metric could be adapted to use the promoted drawing D0ðGÞ; thus also taking into
account the angles at the edge bends.



Figure 9. Example graph drawingswhere (a) has maximized angles at its centre node, of W ¼ ymin ¼ 1201,
resulting in @m ¼ 1:Drawing (b) has a small minimum angle of ymin ¼ 151 at the same node and thus has

@m ¼ 1� 1
4 � ðð120� 15Þ=120þ 0þ 0þ 0Þ ¼ 0:78
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where Wi is the ideal (maximal) minimum angle at the ith node

Wi ¼
3601

degreeðviÞ
and yi min is the actual minimum angle between the incident edges at the ith node.

So that 1 represents drawings with optimal angles (i.e. assumed easier to read), this
measurement of edge deviation is subtracted from1.Theminimum angle aestheticmetric
is therefore de¢ned by

@m ¼ 1� d

The metric is constrained, 0r@mr1, and is at a maximum when all the nodes have
equal angles between all incident edges (see Figure 9). Restricting the aesthetic to con-
nected graphs with at least one edge ensures that 8i degreeðviÞZ1 (Figure 9).

7. Orthogonality @eo; @no

The concept oforthogonality in a graph drawing is here separated into two independent
measurements:

* the extent to which edges and edge segments follow the lines of an imaginary
Cartesian grid (edge orthogonality, @eo),

* the extent towhich nodes and bend points make maximal use of the grid points in an
imaginary Cartesian grid (node orthogonality, @no).

7.1. Edge Orthogonality @eo

The edge deviation factor of the ith edge segment (di) represents how far away
from an orthogonal angle the edge segment has deviated. It is computed as a proportion
of the angular deviation of the ith edge segment from the horizontal or vertical
gridlines:

di ¼
minðyi; j901� yij; 1801� yiÞ

451



Figure 10. Example of calculating the edge orthogonality aesthetic metric when m0 ¼ 5:There are three
edges with d > 0; giving

@eo ¼ 1� 1
m0

Xm0

i¼1

ðdiÞ ¼ 1� 1
5

0þ 0þ 45
45

þ 26:6
45

þ 28:2
45

� �
¼ 1� 1

5
ð1þ 0:59þ 0:63Þ ¼ 0:44
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where yi is the positive angle between the ith edge and the x-axis, restricted to the range
01ryio1801 and 0rdir1:Note that using edge segments in the de¢nition implies that
DðGÞ needs to be promoted toD0ðGÞ:

So that 1 represents drawings with optimal edge deviation with respect to the ortho-
gonal grid (i.e. assumed easier to read), the average edge deviation factor over all edge
segments is subtracted from 1. The edge orthogonality aesthetic metric is therefore
de¢ned by (Figure 10)

@eo ¼ 1� 1
m0

Xm0

i¼1

di

7.2. Node Orthogonality @no

The de¢nition of the node orthogonality metric is motivated by a desire to ¢x nodes
andbend points to intersections on an imaginary unit grid,whilemakingmaximal use of
the grid area.

The size (in pixels) of the cells in an imaginarygrid onwhich all the nodes ofD0ðGÞ lie
can be determined by calculating the greatest common divisor (GCD) of the set of ver-
tical and horizontal pixel di¡erences between all geometrically adjacent nodes. After
shifting the drawing such that the vertexwith the least value co-ordinates is at the origin,
a transformation function that divides the co-ordinates of the vertices inD0ðGÞ byGCD
can then be used to determine their position on the imaginary grid’s gridpointse.

The bounding rectangle of the vertices of the transformed D0ðGÞ has integer height
and width values h and w; and the number of available grid-point intersections in the
imaginary unit grid is therefore

A ¼ ðwþ 1Þðhþ 1Þ
We de¢ne the node orthogonality metric as the extent to which the drawing makes

maximal use of the grid area, i.e. the proportion of available gridpoints occupied by
e Note that this means that the resolution of the grid onwhich the drawing is based is e¡ectively being
reduced.



Figure 11. Example of calculating the node orthogonality aesthetic metric when n0 ¼ 6:There are A ¼
ðwþ 1Þðhþ 1Þ ¼ ð3þ 1Þð2þ 1Þ ¼ 12 available gridpoints so that @no ¼ n0=A ¼ 6=12 ¼ 0:5
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the nodes inD0ðGÞf:

@no ¼
n0

A

Since no two nodes share the same co-ordinates, n0oA and 0r@nor1 (Figure 11).

8. Upward Flow @f

This metric determines the proportion of edge segments ofD0ðGÞ which have a consis-
tent direction. Edge segments are used rather than edges, as edgeswith edge segments of
alternating direction are generally considered undesirable.

The desired direction is usually upwards or downwards with respect to a vertical axis,
but the metric makes no assumptions about its orientationg. It is assumed that G is a
directed graph.

The notation ei indicates the vector corresponding to the ith directed edge inD0ðGÞ:
The inner product of two vectors is denoted/v1 � v2S:The unit vector parallel with the
desired direction is denoted 1and is considered to point in the direction of desired £ow.

We de¢ne the upward £ow metric as

@f ¼
1
m0

Xm0

i¼1

1 if /ei � 1S > 0

0 otherwise

(

The metric is 0 for undirected graphs, and is limited to the range 0r@fr1:
f Note that using n0 instead of n in the de¢nition of @no means that an increase in the number of bends
(such as in a space-¢lling curve) may increase the node orthogonality value arti¢cially.

gThe examples in Section 9 below use ‘upwards with respect to the vertical axis’ as the desired £ow
direction.
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9. Example Application of the Metrics

To demonstrate the application of these metrics, this section presents example graph
drawings and associated aesthetic values (see Figures12 and13). All the metrics have been
implemented inJava, and use the output ¢les of the GraphLet systemh as their input.

The graphs in Figure 12 are from the set of undirected graphs collected by Stephen
North at AT&Ti. Duplicate edges between the same two nodes have been removed, and
the order of nodes speci¢ed in the edge de¢nitions was used to determine edge direc-
tionality for the £ow aesthetic.These following graphs were selected to cover a variety of
graph sizes (Table 1):

The following layout algorithms from the GraphLet system have been used in these
examples [7]:

* GEM (spring): based on the algorithm by Frick [8],
* DAG: based on the algorithm by Sugiyama and Misue [9],
* EXT-DAG: an extension of the DAG algorithm,
* ITS (iterative constraint spring, grid based): based on the algorithm by Fruchterman

and Reingold [10],
* ITSC (iterative constraint spring, with constraints): an adaptation of the ITS

algorithm,
* KAM (spring): based on the algorithm by Kamada and Kawai [11].

The graphs in Figure 13 are created by the GraphLet system itself:
* CIRCLE-4-ITS: circular graph with four nodes, with the ITS algorithm applied,
* COMPLETE-4: complete graph with four nodes,
* CIRCLE-8: circular graph with eight nodes,
* FIBONACCI-4: ¢bonacci tree with four levels,
* BINARY-4: complete binary tree with four levels.

As expected, the value of the crosses aesthetic is high for all drawings: all the algo-
rithms attempt to minimize the number of edge crosses, and the de¢nition of the metric
itself is biased towards high values.

The spring-based drawings are all straight-line drawings, and therefore all have avalue
of1for the bends aesthetic.Thebends aesthetic values for the other drawings are alsohigh
as the algorithms embody the bends-minimization aesthetic.

Table1. Node and edges speci¢cations for the
North Graphs in Figure 12

Nodes Edges

N2 19 21
N5 5 5
N14 24 36
N15 58 87
N19 30 45
h http://infosun.fmi.uni-passau.de/Graphlet.
i http://www.research.att.com/sw/tools/graphviz/refs.html.



Figure 12. Examples of the application of the aesthetic metrics: North graphs with GraphLet algorithms
applied
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Figure 13. Examples of the application of the aesthetic metrics: graphs produced by GraphLet

GRAPH DRAWINGAESTHETICS 515
For the symmetry aesthetic, the grid-based drawings generally performbetter than the
spring ones: this is surprising, as the depiction of symmetric sub-structures is one of the
aesthetics implicitly underlying the spring layoutmodel. Itmaybe that a higher degree of
pixel tolerance is required.

The force-directed nature of the spring layout model also implicitly embodies the aes-
thetic of maximizing the minimum angle between edges leaving a node: while the @m
aesthetic values for these drawings are not low, they are less than those of the grid-based
drawings.While the inner nodes of the spring drawings may have appropriate minimum
angles, those at the edges are clearly o¡ target; the grid-based algorithms appear to have
minimum angles closer to the desired value for all the nodes.

As expected, the grid-based drawings have an edge orthogonality value of1 (or nearly1),
but it is surprising that most of them have a node orthogonality of 0.The actual @no values
for these grid-based diagrams were in the order of 10�4; with the underlying grid mirror-
ing individual pixels.The simpler drawings in Figure 13 demonstrate more e¡ective use of
node orthogonality. Itmaybe that a degree of tolerance,measured in pixels, shouldbe used
in determining the underlying grid such that exact pixel correspondence between vertices
and the grid-points is not required (similar to that used in the symmetry aesthetic).

The values of the £ow aesthetic were calculated with respect to a desired direction of
‘upwards’: values of 0 indicate that all the edges point downwards. As expected, the spring
diagrams do not perform as well on this aesthetic as do the grid algorithms.

10. Conclusion

In an attempt to create a quanti¢able method for assessing the aesthetic quality of any
graph drawing, metrics for seven common aesthetic criteria have been de¢ned. These
metrics will be useful both for formally analysing the aesthetic quality of graph drawings
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produced by di¡erent algorithms, and for measuring the status of intermediate drawings
produced in iterative layout methods like genetic algorithms or simulated annealing.The
metrics are continuous, and can therefore be used to investigate the extent to which a
drawing needs to conform to an aesthetic, rather than always insisting on an extreme.
Application of the metrics to graphs drawnwith common layout algorithms reveal that
assumptions about the aesthetics underlying some algorithms are not valid when they are
computationally measured, and that a computational degree of tolerance is required in
geometric matching of co-ordinates if any relationship to the e¡ects of perception are to
be taken into account.
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