Node and Message Management with the JunctionBox
Interaction Toolkit

Lawrence Fyfe Adam Tindale Sheelagh Carpendale
InnoVis Group Alberta College of InnoVis Group
University of Calgary Art + Design University of Calgary

2500 University Drive NW
Calgary, AB T2N 1N4
Canada

ABSTRACT

Message mapping between control interfaces and sound en-
gines is an important task that could benefit from tools
that streamline development. A new Open Sound Con-
trol (OSC) namespace called Nexus Data Exchange Format
(NDEF) streamlines message mapping by offering develop-
ers the ability to manage sound engines as network nodes
and to query those nodes for the messages in their OSC ad-
dress spaces. By using NDEF, developers will have an eas-
ier time managing nodes and their messages, especially for
scenarios in which a single application or interface controls
multiple sound engines. NDEF is currently implemented
in the JunctionBox interaction toolkit but could easily be
implemented in other toolkits.

Keywords

OSC, namespace, interaction, node

1. INTRODUCTION

The JunctionBox interaction toolkit [2], a library for the
Processing [4] development environment, was created to en-
able interaction designers to easily build sound and mu-
sic control interfaces for touch-enabled devices like vision-
tracking tables and Android [3] tablets. The toolkit is de-
signed to make mapping touch actions to sound controls
easier while still enabling developers to build highly cus-
tomized interfaces.

A mapping task that invariably occurs in systems that
use Open Sound Control (OSC) [5] is managing OSC servers
and the messages in their address spaces. To make this task
easier, JunctionBox now offers functions for managing OSC
servers and their messages. These functions are especially
useful for scenarios in which a single interface (OSC client)
needs to control multiple OSC servers. It is important to
distinguish OSC servers in these scenarios, especially if they
have distinct OSC address spaces.

To facilitate node management, the Nexus Data Exchange
Format (NDEF), a new namespace for OSC, was created to
handle both node management and message management.
NDEF works by offering messages that are always identified
by their source and by allowing for queries of OSC servers
by OSC clients. The namespace is deliberately simple while

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NIME’12, May 21 — 23, 2012, University of Michigan, Ann Arbor.
Copyright remains with the author(s).

1407 14 Avenue NW
Calgary, AB T2N 4R3
Canada

2500 University Drive NW
Calgary, AB T2N 1N4
Canada

leaving open the possibility of future enhancement. While
NDEF is currently implemented in the JunctionBox toolkit,
it has potential for use as a standard node data exchange
format for other toolkits and applications.

2. NEXUS DATA EXCHANGE FORMAT

The Nexus Data Exchange Format (NDEF) is a new names-
pace created for the JunctionBox toolkit that is meant to
make the task of mapping easier. NDEF is simply a defined
namespace for OSC rather than a change to the specifica-
tion, so applications wishing to use NDEF do not require
new OSC libraries.

2.1 Connections

One of the central features of NDEF is node identification.
All NDEF messages have the IP address and port of the
message source (OSC server or client) as the first two argu-
ments. The generalized form of NDEF messages is:

/ndef/[container]/[method] [IP address] [port]

This kind of identification is particularly useful for cases
where one OSC client is in a one-to-many relationship with
multiple OSC servers or where multiple OSC clients are in
a many-to-many relationship with multiple OSC servers.

To begin an NDEF exchange, the OSC client sends out a
request message. The type tag for the request is si where
the IP address is the string and the port is the integer.

/ndef/connection/request,si

The NDEF exchange system is similar in some ways to
the TCP handshake [1] in which both ends acknowledge the
connection. However, NDEF is a two way exchange rather
than a three-way handshake. When a connection request is
received (and accepted), an accept message is sent to the
OSC client.

/ndef/connection/accept,si

This exchange allow nodes to determine whether another
node has NDEF capabilities and whether it is available for
connections. Another important element of the exchange
is that both nodes then can identify each other using IP
address and port as unique identifiers. When multiple nodes
may be involved in a network, this identification is essential.

2.2 Messages

Once a connection has been established between two or
more nodes, each node can send a message request to the
other nodes. A message request has a form similar to a
connection request.

/ndef /message/request,si



The reply message has a slightly different form than the
other messages in the namespace since, besides the IP ad-
dress and port of the message source, it has the OSC mes-
sage encoded as a string as the last argument.

/ndef /message/reply,sis

An example reply message containing the OSC message
/foo:

/ndef /message/reply, "192.168.1.1" 7000 "/foo"

Any number of reply messages can be received by a re-
questing node once an initial request has been sent. This
allows for some flexibility in the setup of OSC servers includ-
ing the sending of new message replies as they are created
on the server. NDEF does not provide a message format
for setting ranges on OSC arguments. The reason for this is
that JunctionBox values are always sent normalized from 0-
1. This eliminates the need to set ranges since OSC servers
will simply scale arguments to any range without the in-
terface being concerned with the specific range. Since all
numbers output by JunctionBox are normalized, all num-
bers are floats.

3. IMPLEMENTATION

In the JunctionBox toolkit, all NDEF message handling is
done via the Dispatcher class. The following code will cre-
ate a new Dispatcher, initialize NDEF listening, request a
connection, and request messages.

Dispatcher d = new Dispatcher();
d.startListening();
d.requestConnection() ;
d.requestMessages();

Internally, JunctionBox has a Relay class that stores the
IP address and port of the target node/OSC server and any
messages mapped to that server. When an NDEF exchange
occurs, the messages provided via NDEF are automatically
added to a Relay for that node. For each connection that is
accepted, a new Relay object is created. Messages can only
be received for mapping if the sending node has previously
been connected via the connection request/accept exchange.
Figure 1 shows the relationship of Relays to the internal
class structure of JunctionBox.

Junction

’ Action |—> Relay

osc

Dispatcher |———p»]

JunctionBox

]
|

|

|

|

|

|

| Contact
|

|

|

|

|

|

|

|

Figure 1: The use of the Relay in the JunctionBox
toolkit.

Once the message request has been sent by the Dispatcher,
message replies can be sent by the OSC server at any time
and will still be added to the appropriate Relay for that
OSC server since replies can be identified by the source IP
address and port number.

Relay objects can be returned from the Dispatcher as an
array with:

Relay[] relays = d.getRelays();

Messages can then be retrieved from each Relay as an
array of strings. Since they are returned as strings, the
messages can be displayed in any kind of interface or simply
printed via the console for examination by the developer
doing the mapping.

String[] messages = relay.getMessages();

That string array can then be used to map actions to
messages via the JunctionBox mapping system. A Junc-
tion, representing a defined area of a touch interface that
is active, can have it actions like translation, rotation and
scaling mapped with the received messages. For example,
the following snippet of code could be used to add the OSC
messages from a node to an array of junctions for mapping
to the Y translation action. The junctions could represent
a series of vertical slider widgets.

for (int i = 0; i < message.length; i++) {
junctions[i] .addMessage (Action.TRANSLATE_Y,
message [i]);

}

4. SUMMARY

This paper described the Nexus Data Exchange Format
(NDEF), a new Open Sound Control (OSC) namespace for
node management and message exchange. NDEF allows for
the automatic exchange of messages from OSC servers to
control interfaces. In addition to message mapping, NDEF
also makes it easier to manage multiple OSC servers from
a single interface by allowing for clear identification of all
OSC servers. In this way, not only can multiple servers be
identified but each server can have a completely separate
OSC address space. NDEF is currently implemented in the
JunctionBox interaction toolkit but could be implemented
in a variety of other toolkits where node and message man-
agement are needed.

5. ACKNOWLEDGEMENTS

We would like to thank the Alberta College of Art + Design,
the Canada Council for the Arts, the Natural Science and
Engineering Research Council of Canada, SMART Tech-
nologies, the Canadian Foundation for Innovation, and the
Alberta Association of Colleges and Technical Institutes for
research support. We would also like to thank the members
of the Interactions Lab at the University of Calgary.

6. REFERENCES

[1] V. Cerf, Y. Dalal, and C. Sunshine. Specification of
internet transmission control program.
http://tools.ietf.org/html/rfc675, 1974.

[2] L. Fyfe, A. Tindale, and S. Carpendale. Junctionbox:
A toolkit for creating multi-touch sound control
interfaces. In Proceedings of the Conference on New
Interfaces for Musical Expression, pages 276-279, 2011.

[3] Google. Android developers.
http://developer.android.com/index.html, 2012.

[4] C. Reas and B. Fry. Processing: programming for the
media arts. AI & Society, 20(4):526-538, 2006.

[5] M. Wright. Open sound control: an enabling
technology for musical networking. Organised Sound,
10(3):193-200, 2005.



