
Eurographics Conference on Visualization (EuroVis) 2014
H. Carr, P. Rheingans, and H. Schumann
(Guest Editors)

Volume 33 (2014), Number 3

Papilio: Visualizing Android Application Permissions

M. Hosseinkhani Loorak1 P. W.L. Fong1 and S. Carpendale1

1Department of Computer Science, University of Calgary, Calgary, Alberta, Canada

Figure 1: The visualization of Android application permissions with Papilio

Abstract
We introduce Papilio, a new visualization technique for visualizing permissions of real-world Android applica-
tions. We explore the development of layouts that exploit the directed acyclic nature of Android application per-
mission data to develop a new explicit layout technique that incorporates aspects of set membership, node-link
diagrams and matrix layouts. By grouping applications based on sets of requested permissions, a structure can
be formed with partially ordered relations. The Papilio layout shows sets of applications centrally, the relations
among applications on one side and application permissions, as the reason behind the existence of the partial
order, on the other side. Using Papilio to explore a set of Android applications as a case study has led to new
security findings regarding permission usage by Android applications.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Systems]: Information Interfaces
and Presentation—User Interfaces

1 Introduction

We present Papilio as a new visualization for the permis-
sions data of mobile applications. In particular, we exam-
ine data about the permissions used in Android applications.
This research is motivated by the proliferation of mobile de-
vices in the last few years, where third-party applications
have seen ubiquitous adoption. There were at least 5,000
new applications added to the Android Market each month in
2013 [App12]. These applications empower people in many

aspects of their lives such as social networking, online bank-
ing and self-monitoring. However, they may also put peo-
ple at risk for invasion of privacy or even possibly malicious
control of personal devices. We apply visualization to better
understand these trade-offs.

While mobile applications bring many types of new con-
veniences into our everyday lives, most people are unaware
if their privacy is being violated or whether an application
has access to their private data. Examples of these types of

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



M. Hosseinkhani, P. W.L. Fong & S. Carpendale / Papilio: Visualizing Android Application Permissions

private data include contact lists, SMS messages and accu-
rate geolocations. Recent reports show the existence of mali-
cious applications in the official Android Market and Apple
App Store [McA12, Sym13, Pan13]. In order to provide bet-
ter protection from malicious applications, modern mobile
platforms have utilized different approaches to minimize the
risks. Apple, for instance, makes use of a vetting process
[App13]. In this process, a trusted party ensures that each ap-
plication is in accordance with the Apple’s developer license
agreement. This agreement contains the accepted conditions
under which an application can get access to private data.

By contrast, Google does not verify Android applications.
Instead, people are responsible for granting access to their
sensitive data to Android applications by means of install-
time permissions. Each application must declare its required
permissions before its distribution. When a person initiates
the process of installing an application, a list consisting of all
the permissions requested by the application will be shown.
This list alerts the individual to all resources to which the ap-
plication will gain access if it is installed on the device. For
instance, installing an application that requests SEND_SMS
permission, allows the application to send SMS messages
on behalf of the person who owns the device. Malicious ap-
plications might use this permission to send SMS messages
to premium numbers. If one is not willing to grant all the
requested permissions to the application, she can cancel in-
stalling the application. More details on how the permissions
work in the Android platform will be provided in §3.1.

Although install-time permissions do provide people with
control over their privacy and security, they can be ineffec-
tive if the developers do not follow the principle of least
privilege in their permission requests [SS75]. Felt et al.
[FCH∗11] examined a dataset of Android applications and
found that almost one-third of applications in their dataset
are over-privileged, i.e. they requested more permissions
than they need. The violation of least privilege and other po-
tential issues in requesting permissions by Android applica-
tions can be discovered by performing exploratory analysis
tasks. Information visualization (InfoVis) systems have been
noted as potentially useful when applied for exploratory
tasks in large information spaces [FVWSN08]. Thus, we
present a new visualization technique, Papilio, for exploring
how permissions are being requested by Android applica-
tions in practice.

Our main contribution is Papilio, which is a two-sided
visualization that centrally presents Android applications
grouped into equivalence classes (e-classes for brevity) ac-
cording to their requested permission set. The superset and
subset relations among e-classes, based on their set of re-
quested permissions, are partially ordered. Papilio visualizes
these partial order relations, henceforth called parent-child
relations, on the right side of central e-classes. On the left
side, the permissions, which are the reason behind the exis-
tence of the parent-child relation among e-classes, are shown
as e-class attributes (Figure 1). Papilio also offers interaction
options, which include Slide on Halo: a novel technique for

spatial cognition of the off-screen points of interest and also
fast and smooth navigation towards them.

The target audience of Papilio is individuals who aim to
explore and analyze the permission usage of Android appli-
cations. Examples include security analysts, Android devel-
opers or even a mobile application user. In this paper, we
consider security analysts as the main targeted operators of
Papilio.

This paper is organized as follows. First, we present the
related work and then provide a brief background on An-
droid permissions in §3.1. We then describe our dataset of
Android applications in §3.2 and the related security tasks
in §3.3. We step through our iterative visualization devel-
opment process in §4 and present a detailed description of
the Papilio visualization technique and its interactions in §5.
For demonstrating the utility of Papilio, we discuss security
findings we obtained from exploring and analyzing Papilio
in §6. Conclusions are drawn in §7.

2 Related Work
Two areas of research, information security and information
visualization, both offer literature related to our work.

Information security: There is emerging research investi-
gating the use of information visualization for security pur-
poses [BKvOS10, BJL∗13, TPP09].

In the security literature, we look at techniques that are
closely related to our research in that they exploit visual-
ization for security analysis of smart phone permissions.
The first is by Balebako et al. [BJL∗13] who propose vi-
sual interfaces to inform mobile users of any privacy leaks.
In one of their proposed interfaces, a matrix representa-
tion of application names combined with the frequency
of leaked information is depicted. The second work is by
Barrera et al. [BKvOS10] who use Self Organizing Maps
(SOMs) [KSH01], which incorporate a type of artificial neu-
ral network to visually observe permission usage in their
targeted Android applications. An SOM can provide a low-
dimensional visualization of the high dimensional data while
preserving the topological properties of the input space.

The work above differs from ours in that Papilio pro-
vides a lossless presentation of the dataset. More specifi-
cally, every detail in our dataset is represented in our pro-
posed layout. In contrast, techniques which involve a di-
mensionality reduction may hide important information. For
instance, in Barrera et al.’s work, when the category of a
neuron (a hexagonal region in the map) is labeled with only
the strongest category (i.e. a winner-take-all approach) other
weaker categories in that neuron are not visible for further
analysis. In addition, the composite application permission
usage vectors of each hexagon are not available in their map.
Consequently, deeper analysis of each permission vector for
every application would not be possible in a hexagon.

Information visualization: In our proposed visualization
we have used an iterative design approach by applying dif-
ferent layouts in each iteration. These three different layouts

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



M. Hosseinkhani, P. W.L. Fong & S. Carpendale / Papilio: Visualizing Android Application Permissions

are generally inspired by different variations of node-link di-
agrams and adjacency matrices which are discussed in more
detail in §4.

There is a large body of work in the literature regarding
graph visualization [HMM00, VLKS∗11]. However, inves-
tigations with our early design iterations revealed that our
dataset has several densely connected e-classes in the form
of a rooted Directed Acyclic Graph (DAG). DAGs are usu-
ally represented with Sugiyama layout [STT81], however,
in large dense DAGs even an optimal Sugiyama layout can
have many link crossings and long links [PNK11, BW11].

Concept lattices [Wil92] that are employed in Formal
Concept Analysis (FCA) would be an example of utiliz-
ing a variant of Sugiyama layout to represent an informa-
tion space in FCA. FCA is a well-known method for data
analysis and knowledge representation. Eklund et al. [EV10]
have done a comprehensive study of different types of con-
cept lattices in FCAs. Within them, representation of many-
valued contexts [MDNST08] would be the most relevant lay-
out to our work. However, these types of layouts are usually
considered for numerical or ordinal attributes of a concept,
while in our work, permissions are nominal data attributes
associated with applications. Furthermore, in many-valued
contexts, increase in number of objects and their attributes
will result in overcrowded layout with too small embedded
visualizations for each concept [EV10]. A common solu-
tion to the problem in many-valued contexts, is having two-
separated views of data, in which one view represents the
binary relation between concepts while the other represents
attributes of the selected concept in another separate lay-
out. Lastly, in concept lattices, representations are usually
based on a sole binary relation between concepts, while in
our layout, three different binary relations between data en-
tities, namely, application-permission relation, application-
category relation, and permission-type relation are repre-
sented in a unified layout.

An alternative approach for graph representation is ad-
jacency matrices. Ghoniem et al. [GFC04] note that while
matrix representations do not have link crossing and node
overlapping problems, following paths is relatively difficult.

Therefore, a hybrid utilization of node-link diagram and
adjacency matrices could alleviate the weakness of each
layout [HFM07]. Dinkla et al. [DWvW12] proposed com-
pressed adjacency matrices (CAMs) for visualizing gene
regulatory networks (GRNs). In their representation, the in-
put graph and its nodes are decomposed and rearranged to
some matrix-like blocks which are connected to each other
with arcs. Compared to node-link diagrams, CAM layouts
reduce link crossings. In addition, they are more space effi-
cient in comparison with traditional adjacency matrices.

Another line of related work is GeneaQuilts [BDF∗10],
by Bezerianos et al. wherein they have applied Quilts layout
[WBS∗07] to genealogy data. In their representation of pedi-
grees, generations form a zigzagged sub-matrix of individu-
als. Families and their pedigree relationships are specified
via paths and intersections of rows and columns within and

across sub-matrices. Successive generations are linked to the
previous generations by sharing family columns. The Ge-
neaQuilts design also considers interaction techniques such
as Bring & Slide, path highlighting, panning, and filtering.

Our work differs from theirs in the following respects.
First, Papilio is a two-sided visualization technique in the
sense that the parent-child relations between e-classes are
represented on the right side, and the set of permissions for
each e-class is shown on the left side as e-class attributes.
This two-sided layout enables richer representation of infor-
mation attached to each e-class. In contrast, the GeneaQuilts
or CAM are layouts that do not need information richness
for each element.

Second, our proposed visualization deals with a different
type of dataset in its structure compared to Genealogy or
GRN data. In our dataset, it is possible to have a skip link
between two e-classes of applications belonging to two far
non-successive layers of our representation. Therefore, the
skip links are less localized. By contrast, in genealogy data,
it is a rare case for an individual to live and make families for
more than three or four generations. This distinct difference
will be more noticeable when an individual wants to look at
the off-screen children or parents of an e-class. We propose
our Slide on Halo technique to address this issue in §4.

3 Android Permissions

In this section, we provide a brief background on Android
permissions. We then present our dataset of Android appli-
cations and list the tasks in analyzing this dataset.

3.1 Background on Android Permissions

Android markets, such as Google Play [Goo13a] and Ama-
zon Appstore for Android [Ama13], allow third-party devel-
opers to freely upload their developed application to the mar-
ket without performing any security checks on them. There-
fore, sensitive resources on a device might be endangered
by potentially malicious applications. Contact list, photos
and location information are some examples of sensitive re-
sources that can affect an individual’s privacy. However, to
protect Android users, these resources are protected by per-
missions. A permission is an abstract concept for binding
operations to resources. For accessing and operating on each
of the sensitive resources of an Android device, a permis-
sion is needed. For example, performing phone calls and
taking pictures require PHONE_CALLS and CAMERA per-
missions, respectively. Generally permissions are either de-
fined by the Android platform, henceforth called standard
permissions, or by the application developers. The standard
permissions protect system resources, while the permissions
defined by a developer in an application restrict access to the
application from other applications. In this work, we only
consider standard permissions which are categorized into
four protection levels [Goo13b].

Normal: A low risk permission that gives the application
the ability to perform actions that do not have harmful con-

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



M. Hosseinkhani, P. W.L. Fong & S. Carpendale / Papilio: Visualizing Android Application Permissions

sequences for the Android user and her device. Examples
include SET_WALLPAPER and VIBRATE.

Dangerous: A higher risk permission with potentially
harmful effects on the user’s sensitive resources. Ex-
amples include CAMERA, RECORD_AUDIO and
READ_CONTACTS permissions giving the application the
ability to use the device camera, record audio and read the
user’s contact list, respectively.

Signature: A permission that Android system assigns only
to the applications signed with the same certificate as the ap-
plication that declared the permission. As an example, the
permission BRICK allows an application to disable the de-
vice. It is a signature level permission declared as a stan-
dard permission by Android. Therefore, only the applica-
tions signed by the Android device manufacturer should be
able to obtain this permission.

SignatureOrSystem: A permission that can only be
granted to applications in the Android system image or that
are signed with the same certificate as the application that
declared the permission. These restrictions should confine
the use of signatureOrSystem permissions to the applications
pre-installed on the Android device. Examples include IN-
STALL_PACKAGES which allows an application to install
other application packages on the device.

For obtaining permissions, the developer declares the re-
quired permissions for her application in a file called Man-
ifest.xml which is part of the Android application package.
At install-time, the list of requested permissions by the appli-
cation is presented to the user. At this point, the user must ei-
ther grant all the permissions to the application and continue
with the installation or give up installing the application.

3.2 Dataset
Since we could not obtain a publicly available dataset of An-
droid applications which contains the category of each appli-
cation, its standard requested permissions and the protection
level of each permission, we gathered our own dataset.

In September 2012, we investigated the categories of
the 200 most popular free applications in Google Play and
ranked the categories based on their number of applications
in descending order. We then selected the top 16 categories.
Table 1 lists our chosen categories, and provides the number
of applications per category in the set of 200 applications
we explored. Afterwards, we downloaded the top ranked 25
free applications from each selected category. As a result,
our dataset consists of 400 Android applications in total.

Each application in our dataset was collected in the form
of an Android application package (APK). We used the An-
droid Asset Packaging Tool (aapt) to extract the permissions
requested by the application from its Manifest.xml file. We
then filtered the standard permissions requested by the appli-
cation. Finally, our dataset contains the name, category and
the standard permissions of each application.

Our collected applications request 76 distinct permissions

Table 1: Top 16 categories of popular free applications in
Google Play and average number of requested permissions
by applications per category.

App. Category Num. of Apps. Average Perms.
(in top 200 apps.) (in our dataset)

Game 81 4.01
Communication 16 16.04
Social 13 8.80
Productivity 13 4.42
Entertainment 11 6.36
Tools 11 6.25
Music & Audio 10 7.24
Finance 8 3.87
Weather 5 4.73
Business 5 5.66
Travel & Local 5 5.86
Shopping 5 6.25
Health & Fitness 4 9.08
Lifestyle 4 5.01
Education 4 2.77
Medical 3 1.36

out of 130 available standard permissions. The remaining
ones are never requested by any of our sample applications.
Table 1 shows the average number of permissions requested
by applications of each category within our dataset.

Furthermore, for each standard Android permission we
extracted its protection level from AndroidManifest.xml file
within the Android platform. Each permission is then pre-
sented with its name and protection level in our dataset.

3.3 Sample Tasks

When analyzing the permission usage of Android applica-
tions, an analyst might encounter a number of exploratory
tasks. These tasks for data analysis vary depending on the
goals each analyst has in mind. From working with secu-
rity experts, we created a list of tasks that are important for
analyzing our dataset. Our proposed visualization, Papilio,
assists the analysts to perform these tasks and supports ex-
ploration of how Android applications request permissions
in practice. The list of tasks is categorized as:

Explicit (X): tasks that their answers explicitly exist in the
dataset.

X 1 : Identify the requested permission set of each Android
application.
X 2 : Find the protection level of each requested permission
by an application.
X 3 : Identify the category of each Android application (e.g.
Business, Finance, Social, etc.).

Implicit (M): tasks that involve further analysis of the ex-
plicit data to infer the results implicitly.

M 1 : Find applications with the same set of permissions.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



M. Hosseinkhani, P. W.L. Fong & S. Carpendale / Papilio: Visualizing Android Application Permissions

Figure 2: Applying force-directed layout on our dataset.
Inset A: the force-directed layout on the entire dataset. B: the
layout of one-third of applications in our dataset (reducing
the applications gives a better view of the layout).

M 2 : Find the most frequently requested permissions.
M 3 : Identify any relationship among Android applications
based on their requested permissions.
M 4 : Investigate how the gradual increase in permission
usage changes the category of applications.
M 5 : Examine any correlation between the application cat-
egories and their permissions. This might assist the analyst
to identify the expected permissions of each category.

4 Iterative Design Approach

We developed Papilio by means of iterative design. The ex-
planation is annotated with task numbers where a specific
feature was included to address a given task.

4.1 Apply Force-Directed Layout

Our first visualization of our dataset, inspired by TextArc
[Pal02] and force-directed layout [FR91], is illustrated in
Figure 2. It has four main components: the Android appli-
cations and their categories, permissions and their protec-
tion levels, the relations among applications and their per-
missions, and the relations among the application e-classes.

Applications and their categories: In Figure 2, Android
applications requesting the same set of permissions are
grouped together as an equivalence class (e-class) (M 1).
Each e-class is depicted by a circle that contains a set of ap-
plications. Every single application is represented by a small
circle, which is coloured according to its category (X 3). The
legend in the upper right corner shows the mapping between
categories and their colors. In Figure 2, for instance, CA is an
e-class containing one application from the Tools category.

Application permissions and their protection levels: In
Figure 2, the Android permissions are each indicated by a
small square placed along the large external ellipse. These
permission squares are coloured by their protection level
(X 2). Normal, dangerous, signature and signatureOrSystem

permissions are coloured with green, pink, blue and red, re-
spectively. Also, permissions with the same protection level
are grouped together. Permissions within each group are po-
sitioned sequentially on the ellipse boundary.

Relation among applications and their permissions:
Each permission in the external ellipse is connected by an
undirected line to each e-class that uses it (X 1).

Relations among application e-classes: By considering
the permissions used by sets of e-classes, it is apparent that
the relations among the e-classes are partially ordered (M 3).
In Figure 2, this parent-child relationship among e-classes is
displayed via a directed line from the child e-class to its par-
ent. A direct line among two e-classes means that the per-
mission set of the child e-class is a superset of its parent’s
permission set. For instance, Figure 2 shows that there are
parent-child relations between CA (as a child e-class) and CB
and CC (as parent e-classes) which implies that each permis-
sion set of CB and CC is a subset of the CA permission set.

Critique of the first iteration: Using Force-Directed lay-
out resulted in distributing the e-classes rather uniformly
over the screen space. This has the advantage that all e-
classes can be displayed at once which makes it easier to
compare the e-classes. However, the directed and undirected
lines connecting e-classes to each other and to permissions
are also spread over the whole screen space. This resulted
in many link crossings which in turn led to the familiar dif-
ficulties of many lines in dense graphs. However, as there
exists an e-class in our data with an empty permission set,
we are dealing with a rooted DAG. For our next iteration,
we thought to make use of these hierarchical relationships
within our data.

4.2 Taking Advantage of Hierarchy

Our second visualization, was inspired by the layered graph-
layout style [BM01] to better display the hierarchical struc-
ture of our data. In this layout, a layer is assigned to each
e-class (according to the longest path layering algorithm
[RDM∗87]) and e-classes belonging to the same layer are
drawn in a horizontal row. Then the child-parent links are

Figure 3: The representation of e-classes and their relations
in our dataset using the “dot” program. Many link crossings
and long links has led to an unreadable representation.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



M. Hosseinkhani, P. W.L. Fong & S. Carpendale / Papilio: Visualizing Android Application Permissions

Figure 4: Papilio is a two-sided visualization showing ordered application e-classes through the center, with the parent-child
relations among e-classes on the right side and the requested permissions of e-classes on the left side.

directed upward, connect e-classes of the successive or non-
successive layers. To order the e-classes in each layer such
that the link crossings between layers are minimized, the al-
gorithm proposed in [GKNV93] is used as implemented in
the dot program [Gra13]. Figure 3 shows the layout of ap-
plication e-classes and their relations visualized by the dot
program without the representation of permissions.

Critique of the second iteration: The main benefit of this
visualization is its ability to demonstrate the hierarchical
structure of our data. This may be reasonable for a small
number of nodes and links. However, as the number of nodes
or the link density increases, the representation becomes un-
readable and hard to explore [GFC05]. This is even more
problematic when visualizing skip links where the source
and destination nodes belong to two non-successive layers.

Part of the problem of trying to make use of the hierarchy,
is that our data is not a true hierarchy but a partial order and
that we have two distinct types of edges to portray. In our
final visualization Papilio, described in the next section, we
work with both of these factors.

5 Papilio Visualization

We present Papilio as a new layout that minimizes the link
crossings. The name Papilio means butterfly in Latin and
was chosen because of the central insect-like body of appli-
cation e-classes with two sides, though each has a radically
different layout.

In exploring how to improve our e-classes relationship
edges layout, we considered both node-link and matrix tech-

niques. In Papilio we used a combination of matrix and
node-link diagrams working towards taking advantage of the
strengths of both techniques. For this approach, we were in-
spired by GeneaQuilts [BDF∗10]. We have created Papilio
as a two-sided visualization technique, where we visualize
the hierarchical structure of the data on one side and the e-
class permissions on the other side. Figure 4 illustrates the
visualization of our dataset using Papilio.

Applications and their categories: In Papilio, an e-class
groups together the applications requesting the same set of
permissions (M 1). Within one e-class, each application is
represented by a small circle colored according to its cate-
gory (X 3), with the legend located at the right upper corner.

Relations among application e-classes: To explain the
parent-child relationship between e-classes, consider CA as
an e-class, which contains all applications with exactly the
same set of permissions. CB, is a “child” of CA, if it uses a
superset of permissions (all of CA’s permissions plus some
others). Thus, a given e-class can have many children. Also,
e-class CC is a sibling of CB if CB and CC have exactly the
same parents.

In Papilio, we visualize the parent-child relations on the
right side of e-classes (M 3). To position the e-classes on the
screen, we first assign a layer to each of them according to
the longest path layering algorithm [RDM∗87]. This layer-
ing algorithm allows us to assign the sibling e-classes to the
same layer. This will help us in compressing the number of
links to be drawn on the layout which will be discussed later
in this section. To order e-classes within each layer, we adapt

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



M. Hosseinkhani, P. W.L. Fong & S. Carpendale / Papilio: Visualizing Android Application Permissions

Figure 5: CA is a parent e-class for CB, CC and CD. Also CB
and CC are siblings which are recognizable based on their
positions.

a variant of the barycenter heuristic [SM05] which is imple-
mented in the dot program [Gra13]. This ordering helps us to
minimize the link crossings by positioning the connected e-
classes close to one another. Using the layered e-classes, we
translated the relations among e-classes to the dot format to
compute the (X,Y) e-class positions. Starting from the top-
most layer, our layout algorithm orders the e-classes in each
layer according to their X positions obtained from running
the dot program, and lays them out in order across the di-
agonal of a matrix. As much as possible we compress the
distance between adjacent e-classes so that the visualization
is of manageable size. We do ensure that we can draw both a
vertical upward line and a horizontal line at the right side of
each e-class. These lines are the links connecting e-classes
based on the parent-child relations.

A vertical line reaching up from an e-class implies at
least one parent and thus will contain at least one filled
blue square. These filled blue squares directly above each
e-class indicate the paths to its parent e-classes. The filled
blue squares on the horizontal line to the right side of each
e-class indicate the paths to its child e-classes. Each parent
or child can be reached by following the corresponding blue
squares to the left or bottom, respectively, until an e-class
is hit. This can be seen in Figure 5 where e-class CA is the
parent of e-classes CB, CC and CD.

For compressing the number of links to be drawn in our
layout, we group sibling e-classes together and use e-class
position as a visual element to display their sibling relation.
To this end, if an e-class has siblings, all of them are located
right below each other and just one vertical upward line con-
nects them all to their common parents (Figure 5). This tech-
nique clearly demonstrates the sibling e-classes, and com-
presses the number of needed links among e-classes.

Application permissions and their protection levels:
Each permission has a distinct connected representation
starting at the first appearance of an e-class that makes use of

this permission. Every permission connection is filled with a
color representing its protection level (X 2). Normal, danger-
ous, signature and signatureOrSystem permission connec-
tions are filled with green, pink, blue and red, respectively.

This method of visualizing e-class permissions in Papilio
allows the observer to infer some approximate statistical
knowledge about the permission usage in our dataset. An
example is discovering the set of most frequent requested
permissions (M 2).

Relations among applications and their permissions: In
Figure 4, the set of filled and unfilled circles on the horizon-
tal line on the left side of each e-class, called the permission-
line, indicate the e-class’s permission set (X 1). The filled
gray circles represent the permissions inherited from one of
the e-class’s parents. While unfilled ones are the permissions
the application has in addition to its parents’ permissions.

5.1 Papilio Interactions

Papilio visualization can be explored via the traditional
zoom, pan and select. Zooming and panning offer the abil-
ity to explore the whole information space. Selecting either
an application or a permission displays detailed information
about the chosen application or permission. We added some
additional exploration options.

Interaction with e-classes: In Papilio, it is important to be
able to focus on an e-class and navigate through the parent-
child relations to find e-classes that are connected to it. Thus,
selecting an e-class highlights all the right hand side paths
connecting the chosen e-class to its parents and children
(Figure 6). Furthermore, the highlighted horizontal lines at-
tached to the parents and the highlighted vertical lines at-
tached to the children start strumming in order to ease the
detection of the related e-classes [SNDC10].

Slide on Halo: In Papilio some points of interest such as
the child and parent e-classes of a particular e-class might
fall into the off-screen space. Spatial cognition of the off-
screen e-classes as well as following the paths to reach them

Figure 6: Parents and children of a selected e-class. Two
off-screen children and two off-screen parents are repre-
sented using Halos.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



M. Hosseinkhani, P. W.L. Fong & S. Carpendale / Papilio: Visualizing Android Application Permissions

Figure 7: An application requested INSTALL_PACKAGES
permission which is not intended to be used by third-party
applications.

using pan and zoom techniques, can be a hard task, espe-
cially with large datasets [BR03,KEC06]. Thus, we designed
Slide on Halo as a combination of Halo [BR03] and Bring
& Slide [BDF∗10] techniques. Slide on Halo addresses the
spatial cognition of off-screen parent or child e-classes and
also provides a smooth navigation towards them.

By selecting an e-class in Papilio, each of its off-screen
child or parent e-classes is represented by means of an arc,
henceforth called a Halo, on the right or top border of the
display area, respectively. In fact, each Halo is part of a ring
with a radius proportional to the distance of the targeted e-
class from the display area. For instance in Figure 6, the cho-
sen e-class has three children and two parents. However, just
one child is visible on the screen and the rest child and par-
ent e-classes are represented by Halos on the right and above
the selected e-class, respectively.

Selecting a particular Halo, smoothly pans the current
view both vertically and horizontally until the e-class cor-
responding to the selected Halo is reached.

6 Demonstrating the Utility of Papilio
From careful exploration and analysis of Papilio, we can
discover how Android permissions are being requested by
applications in practice. The results reported in this paper
are specific to the 400 applications contained in our dataset.
However, since we considered only the popular applica-
tions, we think our results can effectively explain the permis-
sion usage behaviour of popular applications that individuals
commonly use. The following is a list of our findings from
analyzing our dataset using Papilio.

Requesting standard permissions with signature or sig-
naturOrSystem protection levels by some third-party ap-
plications: According to the Android documents [Goo12],
some of the standard permissions with signature or sig-
natureOrSystem protection levels are not intended to
be used by third-party applications. Examples include
CLEAR_APP_USER_DATA that allows an application to
clear the user data and INSTALL_PACKAGES permission
allowing an application to install packages. However, ex-
ploring Papilio reveals that there are a number of third-party
applications requesting these types of permissions.

As an example, the indicated application in Figure 7 is re-
questing the INSTALL_PACKAGES permission. This appli-
cation has more than 5 million installs according to Google
Play statistics.

Little correlation between categories defined by Google
and application permission requests: By exploring Pa-

pilio and going down the hierarchy, we found that most e-
classes are small and contain only a few applications. Gen-
erally, this means that applications tend to request permis-
sions independently of each other. However, there also exist
a few large e-classes. At the top of the hierarchy, most of
these large e-classes contain applications from several differ-
ent categories. Having a large e-class at the top of the hier-
archy with various categories is reasonable for e-classes that
have general permissions such as the INTERNET. This is
because applications from different categories might solely
request this general permission. However, our observation
shows that towards the middle and bottom portions of the hi-
erarchy, fairly large e-classes consist of applications where
either all or most of them are from the same category. Thus,
it seems that there exists a small correlation between the ap-
plication categories and their requested permissions when
the number of requested permissions increases (M 4, M 5).

Despite this small correlation, any predominant appear-
ance of a category within an e-class would be valuable for
the security analyst in finding over-privileged applications.
As a case in point, in Papilio there are two e-classes with
only applications of the Game category. Therefore, any ap-
pearance of a Game application outside of these two e-
classes would be interesting for further analysis (Figure 8).

No correlation between application categories of the par-
ent and child e-classes: Navigating through the parent-
child relations among e-classes in Papilio reflects that the
categories of applications within a particular e-class do not
correlate with the categories of applications in its parent or
child e-classes. This means that, based on our dataset, the
superset and subset relations among permission sets of two
specific e-classes do not imply any correlation between the
categories of applications they enclose (M 3, M 5).

If this correlation existed, then the analyst could refine
the existing Google categorization into a hierarchical cat-
egorization conforming with the permission set hierarchy.
This finer-grained categorization could realize the principle
of least privilege. However, since we could not find any cor-
relation between categories of parent and child e-classes,
defining the finer-grained categorization based on permis-
sions is dubious.

Particular application categories tend to request more
(or less) permissions in comparison with other cate-
gories: In general, applications appearing towards the bot-

Figure 8: Game applications grouped in CA and CB. The
application in CC is an outlier, potentially interesting for a
security analyst.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



M. Hosseinkhani, P. W.L. Fong & S. Carpendale / Papilio: Visualizing Android Application Permissions

Figure 9: Out of 130 permissions, just a small set of them
are frequently requested by applications and the rest are ei-
ther never requested or requested infrequently.

tom of the hierarchy tend to request more permissions than
other applications. Consequently, if a category appears pre-
dominantly towards the bottom of Papilio, then we expect
applications of that category request more permissions than
other categories (M 4). As an example, by exploring Papilio,
we found that applications belonging to the Communication
category (represented by the black color) are mostly located
at the bottom of the hierarchy. Thus, based on our dataset,
we conclude that applications of the Communication cate-
gory tend to request more permissions in comparison with
the applications of other categories. Figure 10 shows part of
the Papilio towards the bottom of its hierarchy in which 15
out of the 30 displayed applications are from the Communi-
cation category.

Similarly, applications emerging at the top of the hier-
archy usually request less permissions in comparison with
other applications. For instance, in Papilio applications of
Medical category are mostly located at the top. Thus, we ex-
pect Medical applications to request less permissions com-
pared to other categories.

Only a small set of permissions are frequently requested
by applications: The permission usage in Papilio shows
that only a small set of permissions are frequently requested
by applications (Figure 9).

Also, we can see that out of 130 standard Android permis-
sions in our dataset, a large number of them are either not
requested by any application or requested very infrequently.
This result agrees with Barrera et al. [BKvOS10]’s findings.

7 Conclusions and Future Work
In this paper, we presented Papilio, a novel visualization
technique for exploring data about permission usage of real-
world Android applications. E-classes in Papilio, each con-
sisting of applications requesting the same set of permis-
sions, form the boundary between the two sides of visual-

Figure 10: 15 out of 30 applications towards the bottom of
the hierarchy belong to the Communication category (black
colored applications).

ized data. The superset and subset relations among e-classes
based on their permission set form a rooted DAG, visualized
on one side of e-classes. Meanwhile, the permission sets of
e-classes are visualized on the opposite side.

Exploring Papilio is possible through a set of interac-
tions. Among these interactions, Slide on Halo is a technique
for providing spatial awareness about off-screen e-classes as
well as smooth navigation towards them. In this work, ex-
ploring and analyzing Papilio using its interactions led us to
interesting security findings about how permissions are be-
ing requested by Android applications in practice.

Results from our research suggest some directions for fu-
ture work. An important aspect of our visualization is pro-
viding knowledge regarding how permissions are being re-
quested by applications. Since individual people are the ones
who are in danger of installing applications that compromise
their privacy, it would be nice to customize Papilio for per-
sonal mobile devices to give individuals an understanding of
their privacy.

Other than Android, the Facebook platform and Google
Chrome web browser are examples of systems using install-
time permissions. Therefore, it is reasonable to conjecture
that employing Papilio on datasets of Facebook applications
or Chrome extensions could lead to novel findings regarding
permission usage in those platforms. Furthermore, explor-
ing the application of Papilio in other domains for visualiz-
ing the superset/subset relations among many-valued entities
is left as future work. Examples of such datasets include dis-
ease and their symptoms, or food nutritional facts.

Finally, a natural future work is to evaluate the strengths
and shortcomings of Papilio by conducting a study.

Acknowledgment

This research was supported in part by AITF, NSERC,
GRAND, Surfnet, and SMART Technologies.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



M. Hosseinkhani, P. W.L. Fong & S. Carpendale / Papilio: Visualizing Android Application Permissions

References
[Ama13] AMAZON: Amazon appstore for android. http://www.

amazon.com/mobile-apps/b?node=2350149011, 2013. 3

[App12] APPBRAIN: Appbrain stats. http://www.appbrain.
com/stats/, 2012. 1

[App13] APPLE: App review. https://developer.apple.com/ app-
store/guidelines.html, 2013. 2

[BDF∗10] BEZERIANOS A., DRAGICEVIC P., FEKETE J.-D.,
BAE J., WATSON B.: Geneaquilts: A system for exploring large
genealogies. Visualization and Computer Graphics, IEEE Trans-
actions on 16, 6 (2010), 1073–1081. 3, 6, 8

[BJL∗13] BALEBAKO R., JUNG J., LU W., CRANOR L. F.,
NGUYEN C.: Little brothers watching you: Raising awareness
of data leaks on smartphones. In SOUPS (2013). 2

[BKvOS10] BARRERA D., KAYACIK H. G., VAN OORSCHOT
P. C., SOMAYAJI A.: A methodology for empirical analysis of
permission-based security models and its application to android.
In Proceedings of the 17th ACM CCS (2010), pp. 73–84. 2, 9

[BM01] BASTERT O., MATUSZEWSKI C.: Layered drawings
of digraphs. In Drawing Graphs, vol. 2025 of LNCS. Springer
Berlin Heidelberg, 2001, pp. 87–120. 5

[BR03] BAUDISCH P., ROSENHOLTZ R.: Halo: a technique
for visualizing off-screen objects. In Proceedings of the ACM
SIGCHI (2003), pp. 481–488. 8

[BW11] BAE J., WATSON B.: Developing and evaluating quilts
for the depiction of large layered graphs. Visualization and Com-
puter Graphics, IEEE Transactions on 17 (2011), 2268–2275. 3

[DWvW12] DINKLA K., WESTENBERG M. A., VAN WIJK J. J.:
Compressed adjacency matrices: Untangling gene regulatory net-
works. TVCG 18, 12 (2012), 2457–2466. 3

[EV10] EKLUND P., VILLERD J.: A survey of hybrid representa-
tions of concept lattices in conceptual knowledge processing. In
Proceedings of the 8th ICFCA (2010), Springer, pp. 296–311. 3

[FCH∗11] FELT A. P., CHIN E., HANNA S., SONG D., WAGNER
D.: Android permissions demystified. In Proceedings of the 18th
ACM CCS (2011), pp. 627–638. 2

[FR91] FRUCHTERMAN T. M., REINGOLD E. M.: Graph draw-
ing by force-directed placement. Software: Practice and experi-
ence 21, 11 (1991), 1129–1164. 5

[FVWSN08] FEKETE J.-D., VAN WIJK J. J., STASKO J. T.,
NORTH C.: The value of information visualization. In Infor-
mation Visualization. Springer, 2008, pp. 1–18. 2

[GFC04] GHONIEM M., FEKETE J.-D., CASTAGLIOLA P.: A
comparison of the readability of graphs using node-link and
matrix-based representations. In InfoVis (2004), pp. 17–24. 3

[GFC05] GHONIEM M., FEKETE J.-D., CASTAGLIOLA P.: On
the readability of graphs using node-link and matrix-based rep-
resentations: a controlled experiment and statistical analysis. In-
formation Visualization 4, 2 (2005), 114–135. 6

[GKNV93] GANSNER E. R., KOUTSOFIOS E., NORTH S. C.,
VO K.-P.: A technique for drawing directed graphs. Software
Engineering, IEEE Transactions on 19, 3 (1993), 214–230. 6

[Goo12] GOOGLE: Android permissions. http://developer. an-
droid.com/reference/android/Manifest. permission.html, 2012. 8

[Goo13a] GOOGLE: Android market. http://www.play.google
.com/store, 2013. 3

[Goo13b] GOOGLE: Android permission protection levels.
http://developer.android.com/ guide/topics/manifest/ permission-
element.html, Oct 2013. 3

[Gra13] GRAPHVIZ: Graphviz - graph visualization software.
http://graphviz.org, 2013. 6, 7

[HFM07] HENRY N., FEKETE J.-D., MCGUFFIN M. J.: Node-
trix: a hybrid visualization of social networks. Visualization and
Computer Graphics 13, 6 (2007), 1302–1309. 3

[HMM00] HERMAN I., MELANÇON G., MARSHALL M. S.:
Graph visualization and navigation in information visualization:
A survey. Visualization and Comp Graphics (2000), 24–43. 3

[KEC06] KELLER R., ECKERT C. M., CLARKSON P. J.: Matri-
ces or node-link diagrams: which visual representation is better
for visualising connectivity models? InfoVis 5 (2006), 62–76. 8

[KSH01] KOHONEN T., SCHROEDER M. R., HUANG T. S.
(Eds.): Self-Organizing Maps, 3rd ed. Springer, 2001. 2

[McA12] MCAFEE: Android malware promises video while
stealing contacts. https://blogs.mcafee.com/mcafee-labs/android
-malware-promises-video-while-stealing -contacts, 2012. 2

[MDNST08] MESSAI N., DEVIGNES M.-D., NAPOLI A.,
SMAIL-TABBONE M.: Many-valued concept lattices for con-
ceptual clustering and information retrieval. In Proceedings of
18th ECAI (Amsterdam, 2008), IOS Press, pp. 127–131. 3

[Pal02] PALEY W. B.: Textarc: Showing word frequency and dis-
tribution in text. In IEEE InfoVis (2002), vol. 2002. 5

[Pan13] PANDASECURITY: Eeki.a. http://www.pandasecurity
.com/homeusers/security-info/215107/Eeki.A, 2013. 2

[PNK11] PUPYREV S., NACHMANSON L., KAUFMANN M.: Im-
proving layered graph layouts with edge bundling. In Graph
Drawing (2011), Springer, pp. 329–340. 3

[RDM∗87] ROWE L. A., DAVIS M., MESSINGER E., MEYER
C., SPIRAKIS C., TUAN A.: A browser for directed graphs. Soft-
ware: Practice and Experience 17, 1 (1987), 61–76. 5, 6

[SM05] SIIRTOLA H., MÄKINEN E.: Constructing and recon-
structing the reorderable matrix. InfoVis 4, 1 (2005), 32–48. 7

[SNDC10] SCHMIDT S., NACENTA M. A., DACHSELT R.,
CARPENDALE S.: A set of multi-touch graph interaction tech-
niques. In ACM ITS (2010), ACM, pp. 113–116. 7

[SS75] SALTZER J. H., SCHROEDER M. D.: The protection of
information in computer systems. Proceedings of the IEEE 63, 9
(1975), 1278–1308. 2

[STT81] SUGIYAMA K., TAGAWA S., TODA M.: Methods for vi-
sual understanding of hierarchical system structures. IEEE Trans
on Systems, Man and Cybernetics (1981), 109–125. 3

[Sym13] SYMANTEC: Android geinimi. http://www.symantec
.com/security-response/ writeup.jspdocid 5403-99, 2013. 2

[TPP09] TAMASSIA R., PALAZZI B., PAPAMANTHOU C.: Graph
drawing for security visualization. In Graph Drawing (2009),
Springer, pp. 2–13. 2

[VLKS∗11] VON LANDESBERGER T., KUIJPER A., SCHRECK
T., KOHLHAMMER J., VAN WIJK J. J., FEKETE J.-D., FELL-
NER D. W.: Visual analysis of large graphs: State-of-the-art and
future research challenges. In Computer graphics forum (2011),
vol. 30, Wiley Online Library, pp. 1719–1749. 3

[WBS∗07] WATSON B., BRINK D., STALLMANN M., DEVARA-
JAN R., RAKOW M., RHYNE T.-M., PATEL H.: Visualizing very
large layered graphs with quilts. In IEEE Information Visualiza-
tion Conference Poster (2007). 3

[Wil92] WILLE R.: Concept lattices and conceptual knowledge
systems. Computers & Mathematics with Applications 23 (1992),
493–515. 3

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.


